Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analysis links tree height to climate

15.08.2014

What limits the height of trees? Is it the fraction of their photosynthetic energy they devote to productive new leaves? Or is it their ability to hoist water hundreds of feet into the air, supplying the green, solar-powered sugar factories in those leaves?

Both factors — resource allocation and hydraulic limitation — might play a role, and a scientific debate has arisen as to which factor (or what combination) actually sets maximum tree height, and how their relative importance varies in different parts of the world.

In research to be published in the journal Ecology — and currently posted online as a preprint — Thomas Givnish, a professor of botany at the University of Wisconsin-Madison, attempts to resolve this debate by studying how tree height, resource allocation and physiology vary with climate in Victoria state, located in southeastern Australia. There, Eucalyptus species exhibit almost the entire global range in height among flowering trees, from 4 feet to more than 300 feet.

"Since Galileo's time," Givnish says, "people have wondered what determines maximum tree height: 'Where are the tallest trees, and why are they so tall?' Our study talks about the kind of constraints that could limit maximum tree height, and how those constraints and maximum height vary with climate."

One of the species under study, Eucalyptus regnans — called mountain ash in Australia, but distinct from the smaller and unrelated mountain ash found in the U.S. — is the tallest flowering tree in the world. In Tasmania, an especially rainy part of southern Australia, the tallest living E. regnans is 330 feet tall. (The tallest tree in the world is a coastal redwood in northern California that soars 380 feet above the ground.)

Southern Victoria, Tasmania and northern California all share high rainfall, high humidity and low evaporation rates, underlining the importance of moisture supply to ultra-tall trees. But the new study by Givnish, Graham Farquhar of the Australian National University and others shows that rainfall alone cannot explain maximum tree height.

A second factor, evaporative demand, helps determine how far a given amount of rainfall will go toward meeting a tree's demands. Warm, dry and sunny conditions cause faster evaporation from leaves, and Givnish and his colleagues found a tight relationship between maximum tree height in old stands in Australia and the ratio of annual rainfall to evaporation. As that ratio increased, so did maximum tree height.

Other factors — like soil fertility, the frequency of wildfires and length of the growing season — also affect tree height. Tall, fast-growing trees access more sunlight and can capture more energy through photosynthesis. They are more obvious to pollinators, and have potential to outcompete other species.

"Infrastructure" — things like wood and roots that are essential to growth but do not contribute to the production of energy through photosynthesis — affect resource allocation, and can explain the importance of the ratio of moisture supply to evaporative demand.

"In moist areas, trees can allocate less to building roots," Givnish says. "Other things being equal, having lower overhead should allow them to achieve greater height.

"And plants in moist areas can achieve higher rates of photosynthesis, because they can open the stomata on their leaves that exchange gases with the atmosphere. When these trees intake more carbon dioxide, they can achieve greater height before their overhead exceeds their photosynthetic income."

The constraints on tree height imposed by resource allocation and hydraulics should both increase in drier areas. But Givnish and his team wanted to know the importance of each constraint.

The scientists examined the issue by measuring the isotopic composition of carbon in the wood along the intense rainfall gradient in their study zone. If hydraulic limitation alone were to set maximum tree height, the carbon isotope composition should not vary because all trees should grow up to the point at which hydraulics retards photosynthesis. The isotopic composition should also remain stable if resource allocation alone sets maximum height, because resource allocation does not directly affect the stomata.

But if both factors limit tree height, the heavier carbon isotopes should accumulate in moister areas where faster photosynthesis (enhanced by wide-open stomata) can balance the costs of building more wood in taller trees. Givnish, Farquhar and their colleagues found exactly that, implying that hydraulic limitation more strongly constrains maximum tree height under drier conditions, while resource allocation more strongly constrains height under moist conditions.

Most studies of tree height have focused on finding the tallest trees and explaining why they live where they do, Givnish says. "This study was the first to ask, 'How does the maximum tree height vary with the environment, and why?'"

###

CONTACT: Thomas Givnish, givnish@wisc.edu, 608-262-5718 (prefers email for first contact)

David Tenenbaum, 608-265-8549, djtenenb@wisc.edu

Thomas Givnish | Eurek Alert!

Further reports about: Australia conditions evaporation factor found photosynthesis rainfall ratio species stomata

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>