Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analysis links tree height to climate

15.08.2014

What limits the height of trees? Is it the fraction of their photosynthetic energy they devote to productive new leaves? Or is it their ability to hoist water hundreds of feet into the air, supplying the green, solar-powered sugar factories in those leaves?

Both factors — resource allocation and hydraulic limitation — might play a role, and a scientific debate has arisen as to which factor (or what combination) actually sets maximum tree height, and how their relative importance varies in different parts of the world.

In research to be published in the journal Ecology — and currently posted online as a preprint — Thomas Givnish, a professor of botany at the University of Wisconsin-Madison, attempts to resolve this debate by studying how tree height, resource allocation and physiology vary with climate in Victoria state, located in southeastern Australia. There, Eucalyptus species exhibit almost the entire global range in height among flowering trees, from 4 feet to more than 300 feet.

"Since Galileo's time," Givnish says, "people have wondered what determines maximum tree height: 'Where are the tallest trees, and why are they so tall?' Our study talks about the kind of constraints that could limit maximum tree height, and how those constraints and maximum height vary with climate."

One of the species under study, Eucalyptus regnans — called mountain ash in Australia, but distinct from the smaller and unrelated mountain ash found in the U.S. — is the tallest flowering tree in the world. In Tasmania, an especially rainy part of southern Australia, the tallest living E. regnans is 330 feet tall. (The tallest tree in the world is a coastal redwood in northern California that soars 380 feet above the ground.)

Southern Victoria, Tasmania and northern California all share high rainfall, high humidity and low evaporation rates, underlining the importance of moisture supply to ultra-tall trees. But the new study by Givnish, Graham Farquhar of the Australian National University and others shows that rainfall alone cannot explain maximum tree height.

A second factor, evaporative demand, helps determine how far a given amount of rainfall will go toward meeting a tree's demands. Warm, dry and sunny conditions cause faster evaporation from leaves, and Givnish and his colleagues found a tight relationship between maximum tree height in old stands in Australia and the ratio of annual rainfall to evaporation. As that ratio increased, so did maximum tree height.

Other factors — like soil fertility, the frequency of wildfires and length of the growing season — also affect tree height. Tall, fast-growing trees access more sunlight and can capture more energy through photosynthesis. They are more obvious to pollinators, and have potential to outcompete other species.

"Infrastructure" — things like wood and roots that are essential to growth but do not contribute to the production of energy through photosynthesis — affect resource allocation, and can explain the importance of the ratio of moisture supply to evaporative demand.

"In moist areas, trees can allocate less to building roots," Givnish says. "Other things being equal, having lower overhead should allow them to achieve greater height.

"And plants in moist areas can achieve higher rates of photosynthesis, because they can open the stomata on their leaves that exchange gases with the atmosphere. When these trees intake more carbon dioxide, they can achieve greater height before their overhead exceeds their photosynthetic income."

The constraints on tree height imposed by resource allocation and hydraulics should both increase in drier areas. But Givnish and his team wanted to know the importance of each constraint.

The scientists examined the issue by measuring the isotopic composition of carbon in the wood along the intense rainfall gradient in their study zone. If hydraulic limitation alone were to set maximum tree height, the carbon isotope composition should not vary because all trees should grow up to the point at which hydraulics retards photosynthesis. The isotopic composition should also remain stable if resource allocation alone sets maximum height, because resource allocation does not directly affect the stomata.

But if both factors limit tree height, the heavier carbon isotopes should accumulate in moister areas where faster photosynthesis (enhanced by wide-open stomata) can balance the costs of building more wood in taller trees. Givnish, Farquhar and their colleagues found exactly that, implying that hydraulic limitation more strongly constrains maximum tree height under drier conditions, while resource allocation more strongly constrains height under moist conditions.

Most studies of tree height have focused on finding the tallest trees and explaining why they live where they do, Givnish says. "This study was the first to ask, 'How does the maximum tree height vary with the environment, and why?'"

###

CONTACT: Thomas Givnish, givnish@wisc.edu, 608-262-5718 (prefers email for first contact)

David Tenenbaum, 608-265-8549, djtenenb@wisc.edu

Thomas Givnish | Eurek Alert!

Further reports about: Australia conditions evaporation factor found photosynthesis rainfall ratio species stomata

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>