Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Networks of small habitat patches can preserve urban biodiversity

Sets of small and seemingly insignificant habitat patches that are within reach for mobile species may under certain circumstances, as a group, provide an acceptable alternative to larger and contiguous habitats. This finding can make preservation of important ecological functions possible even in urban and other heavily exploited areas.

The study by Dr. Erik Andersson and Dr. Örjan Bodin at the Department of Systems Ecology, and Stockholm Resilience Centre, both at Stockholm University, is unique in the sense that they empirically test and verify an often used modelling approach where habitat fragments are seen as individual nodes in larger networks of interconnected habitat patches.

According to the study, published yesterday in Ecography, sets of small habitat patches can host species that require much larger habitat patches for their daily needs than what each patch itself can provide. Many species are actually capable of moving back and forth between neighbouring patches, given that they are not perceived as being too far apart. Thus, many species are able to make use of the total of the habitat fragments in the network instead of relying on the individual habitat patches for their persistence.

“By defining the habitat patches as parts of a larger network, spatially explicit analyses of how the sum of the patches contributes to species dynamics on the level of landscapes are possible” said Dr. Andersson.

In human dominated areas, such as cities or intensively cultivated landscapes, it is often impossible to set aside large contiguous areas of natural vegetation. Instead, when multiple users compete for a limited area of land, only smaller pockets of natural vegetation (or just green areas) can realistically be preserved.

“Land managers need comprehensive and reliable tools that could help them to direct their conservation efforts to habitat patches where they get as much biodiversity as possible given a limited budget. Our study empirically shows that the network modeling approach is a good candidate for developing such a tool” said Dr. Bodin.

The study combines empirical field studies of birds with theoretical and statistical modelling. A range of bird species were surveyed in various green areas of different size and type in the urban area of Stockholm, Sweden. Geographical Information System (GIS) techniques were deployed to model the urban landscape as a network of individual habitat fragments. The field data were then used to test and verify the assumptions behind the network model.

Modelling a landscape as a network provides for many new analytical possibilities. However, the network modelling approach as such has, until now, rarely been tested empirically.

“Our study gives strength to the network perspective of landscapes, and thus supports further development of new and exiting network-based analyses that could help managers to preserve valuable ecological functions even in very fragmented landscapes” said Dr. Andersson.

The study also showed that it is important to differentiate between different types of green areas when constructing a habitat network since many species have quite different habitat preferences. In addition, the effect of movement barriers and the existence of stepping stones should be included in the analysis, a fact which is particularly relevant in urban areas.

Ellika Hermansson Török | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>