Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Near-extinct African amphibians 'invisible' under climate change

05.09.2014

An international team of researchers has found that the majority of threatened species are 'invisible' when using modern methods to predict species distributions under climate change.

Using African amphibians as a case study, the researchers found that more than 90 per cent of the species listed as threatened on The IUCN Red List of Threatened Species are omitted by the most popular tools for species distribution modelling.

The study, led by researchers from the Universities of York and Copenhagen and the United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) in Cambridge, is published in the journal Diversity and Distributions.

Dr Philip Platts, lead author and Research Fellow with York's Environment Department, said: "Modern methods to predict species distributions under climate change typically leave out rare and threatened species - the ones that currently underpin global spending on conservation. This is because those species, almost by definition, have too few data for their spatial distributions to be modelled using standard tools. We looked at whether missing them out makes a difference for conservation priority setting, either now or under future climates."

The researchers found that under the current climate, statistical restrictions on species distribution modelling means that important sites for narrow-ranging and threatened species are systematically down-played. They say this issue spans many species-groups and is only partially mitigated by modelling at finer spatial scales.

However, when they looked at climate change in the future, they found that persistence among both narrow and wide-ranging species is likely to be highest in sites already identified for conservation investment. Many such sites are projected to experience lower rates of climatic change, echoing historical processes underlying their importance. The wealth of species accumulated, in part, because they were able to persist during large-scale climatic shifts.

The researchers conclude that the focus on existing priorities ought to be maintained, noting that due to forest clearance for agriculture and demand for wood-based fuels, many species could now be incapable of tracking even relatively small changes in climate.

Dr Raquel Garcia, from the Centre for Macroecology, Evolution and Climate (CMEC) at the University of Copenhagen, who co-led the study, said: "Effective biodiversity conservation, both now and in the future, relies on our ability to assess patterns of threat across all species, but particularly those close to extinction. There are ways around the problem, such as combining simple measures of exposure to climate change with knowledge of species' ability to disperse or adapt – methods less reliant on sophisticated modelling tools, which are impractical for many of the rarest species."

The researchers examined data on 733 African amphibians in Sub-Saharan Africa. They found that 400 have too few records to be used in species distribution modelling at continental scales, including 92 per cent of those listed as Vulnerable, Endangered or Critically Endangered on The IUCN Red List. Amphibians were chosen for the study because of the high rates of threat they are predicted to face from climate change, habitat loss and disease, especially in Africa.

Professor Neil Burgess, Head of Science at UNEP-WCMC and Principal Investigator on the study, said: "These results show that unless we use appropriate analysis for the impacts of climate change on species such as amphibians, we risk leaving many rare species under-represented in conservation plans, with the potential to misguide conservation efforts on the ground."

###

The study also involved the National Museum of Natural Sciences, Madrid; the University of Évora, Portugal; the Biodiversity and Climate Research Centre, Frankfurt; the University of the Witwatersrand, Johannesburg; the IUCN Species Survival Commission, Gland, Switzerland; Imperial College London; and the World Wildlife Fund–US.

Caron Lett | Eurek Alert!
Further information:
http://www.york.ac.uk

Further reports about: Africa African Environment IUCN UNEP-WCMC amphibians difference spatial species

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>