Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Near-extinct African amphibians 'invisible' under climate change

05.09.2014

An international team of researchers has found that the majority of threatened species are 'invisible' when using modern methods to predict species distributions under climate change.

Using African amphibians as a case study, the researchers found that more than 90 per cent of the species listed as threatened on The IUCN Red List of Threatened Species are omitted by the most popular tools for species distribution modelling.

The study, led by researchers from the Universities of York and Copenhagen and the United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) in Cambridge, is published in the journal Diversity and Distributions.

Dr Philip Platts, lead author and Research Fellow with York's Environment Department, said: "Modern methods to predict species distributions under climate change typically leave out rare and threatened species - the ones that currently underpin global spending on conservation. This is because those species, almost by definition, have too few data for their spatial distributions to be modelled using standard tools. We looked at whether missing them out makes a difference for conservation priority setting, either now or under future climates."

The researchers found that under the current climate, statistical restrictions on species distribution modelling means that important sites for narrow-ranging and threatened species are systematically down-played. They say this issue spans many species-groups and is only partially mitigated by modelling at finer spatial scales.

However, when they looked at climate change in the future, they found that persistence among both narrow and wide-ranging species is likely to be highest in sites already identified for conservation investment. Many such sites are projected to experience lower rates of climatic change, echoing historical processes underlying their importance. The wealth of species accumulated, in part, because they were able to persist during large-scale climatic shifts.

The researchers conclude that the focus on existing priorities ought to be maintained, noting that due to forest clearance for agriculture and demand for wood-based fuels, many species could now be incapable of tracking even relatively small changes in climate.

Dr Raquel Garcia, from the Centre for Macroecology, Evolution and Climate (CMEC) at the University of Copenhagen, who co-led the study, said: "Effective biodiversity conservation, both now and in the future, relies on our ability to assess patterns of threat across all species, but particularly those close to extinction. There are ways around the problem, such as combining simple measures of exposure to climate change with knowledge of species' ability to disperse or adapt – methods less reliant on sophisticated modelling tools, which are impractical for many of the rarest species."

The researchers examined data on 733 African amphibians in Sub-Saharan Africa. They found that 400 have too few records to be used in species distribution modelling at continental scales, including 92 per cent of those listed as Vulnerable, Endangered or Critically Endangered on The IUCN Red List. Amphibians were chosen for the study because of the high rates of threat they are predicted to face from climate change, habitat loss and disease, especially in Africa.

Professor Neil Burgess, Head of Science at UNEP-WCMC and Principal Investigator on the study, said: "These results show that unless we use appropriate analysis for the impacts of climate change on species such as amphibians, we risk leaving many rare species under-represented in conservation plans, with the potential to misguide conservation efforts on the ground."

###

The study also involved the National Museum of Natural Sciences, Madrid; the University of Évora, Portugal; the Biodiversity and Climate Research Centre, Frankfurt; the University of the Witwatersrand, Johannesburg; the IUCN Species Survival Commission, Gland, Switzerland; Imperial College London; and the World Wildlife Fund–US.

Caron Lett | Eurek Alert!
Further information:
http://www.york.ac.uk

Further reports about: Africa African Environment IUCN UNEP-WCMC amphibians difference spatial species

More articles from Ecology, The Environment and Conservation:

nachricht Treating ships’ ballast water: filtration preferable to disinfection
30.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Are Fish Getting High on Cocaine?
28.07.2015 | McGill University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>