Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature's chemical diversity reflected in Swedish lakes

02.05.2014

It's not only the biology of lakes that varies with the climate and other environmental factors, it's also their chemistry. More knowledge about this is needed to understand the ecology of lakes and their role in the carbon cycle and the climate. Today an international research group led by Uppsala University is publishing a comprehensive study of the composition of organic compounds in the prestigious journal Nature Communications.

- Lake water is like a very thin broth with several thousand ingredients in the recipe, all with different properties. At the same time many of the molecules are common in a broad spectrum of different environments. For instance, in the extremely complex chemical mixture we have found the same components as colleagues have described from the Congo. And they react to environmental factors in the same way in the tropics as in Sweden, says Lars Tranvik, who directed the study.

All of the world's lakes cover only three per cent of the surface area of the continents, but they nevertheless play a huge role in the carbon cycle of the planet. Among other things, there is an outflow of carbon dioxide to the atmosphere. This is largely due to the fact that these lakes take in tremendous amounts of organic materials from the surrounding land, and these are also converted in the water with the help of microorganisms.

Most of this organic matter is found in dissolved form in the water and consists of thousands of different molecules. The present study is the most comprehensive investigation ever of how the composition of these organic compounds is formed by processes in lakes and their catchments in the surrounding landscape. The researchers have analysed the make-up of the dissolved organic matter in 120 lakes from north to south in Sweden, as well as how its composition varies with the climate and other factors.

The study is a collaborative project involving a group of scientists from the Limnology program at Uppsala University and the Max Planck Institute for Marine Microbiology in Bremen/ University of Oldenburg. It is based on, among other things, data from a national environmental survey which monitors water chemistry and other properties of lakes. In addition, the researchers have performed detailed analyses of the organic material with the help of a powerful instrument in Germany – a high-resolution mass spectrometer.

The results show that not only biological diversity but also chemical diversity is regulated by various environmental factors. For example, in lakes with long water retention times, that is, where the water remains in place for a long period before being transported downstream, molecules from surrounding forests and wetlands are largely broken down.

- This leads to a completely different chemical composition, where the content of compounds that are produced by plankton in the lakes is more dominant, says Anne Kellerman, a doctoral candidate who is the lead author of the article.

By comparing lakes in different climates, we can get a picture of what chemical composition the water will have in a future climate with higher temperatures and more precipitation. This has consequences for how we should locate and design plants for drinking water production in the future.

- We're now continuing our investigations of the chemical diversity of nature by trying to figure out what mechanisms underlie the patterns we're finding. What determines that organic material in some cases is preserved in nature for a long time, and why is it degraded quickly under different circumstances? wonders Lars Tranvik.

This research is being conducted in a strong research environment funded by the Swedish Research Council Formas, "Color of Water", which is analysing current and future changes in the organic matter in lakes, and how this affects both drinking-water production and the ecology of the lakes.

###

Reference: Kellerman, A.M., Dittmar, T., Kothawala, D.N., and Tranvik. L. J Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nature Communications xxxxx
DOI: 10.1038/ncomms4804

Contact:

Lars Tranvik, professor, Limnology, department of Ecology and Genetics, mobile: 070 225830. lars.tranvik@ebc.uu.se

Anne Kellerman, PhD student, Limnology, department of Ecology and Genetics, mobile: 072 2168380. anne.kellerman@ebc.uu.se

Dolly Kothawala, researcher, Limnology, department of Ecology and Genetics, mobile: 073 5247371. dolly.kothawala@ebc.uu.se

Lars Tranvik | Eurek Alert!
Further information:
http://www.uu.se

Further reports about: Ecology Genetics Limnology composition diversity materials

More articles from Ecology, The Environment and Conservation:

nachricht Argonne Finds Butanol is Good for Boats
03.08.2015 | Argonne National Laboratory

nachricht Treating ships’ ballast water: filtration preferable to disinfection
30.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greenhouse gases' millennia-long ocean legacy

Continuing current carbon dioxide (CO2) emission trends throughout this century and beyond would leave a legacy of heat and acidity in the deep ocean. These...

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Success 4.0 – Is Your Company Fit for the Future? New Series of Events for Executives

04.08.2015 | Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

 
Latest News

Small tilt in magnets makes them viable memory chips

04.08.2015 | Information Technology

New Design Brings World’s First Solar Battery to Performance Milestone

04.08.2015 | Power and Electrical Engineering

Magnetism at Nanoscale

04.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>