Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature's chemical diversity reflected in Swedish lakes

02.05.2014

It's not only the biology of lakes that varies with the climate and other environmental factors, it's also their chemistry. More knowledge about this is needed to understand the ecology of lakes and their role in the carbon cycle and the climate. Today an international research group led by Uppsala University is publishing a comprehensive study of the composition of organic compounds in the prestigious journal Nature Communications.

- Lake water is like a very thin broth with several thousand ingredients in the recipe, all with different properties. At the same time many of the molecules are common in a broad spectrum of different environments. For instance, in the extremely complex chemical mixture we have found the same components as colleagues have described from the Congo. And they react to environmental factors in the same way in the tropics as in Sweden, says Lars Tranvik, who directed the study.

All of the world's lakes cover only three per cent of the surface area of the continents, but they nevertheless play a huge role in the carbon cycle of the planet. Among other things, there is an outflow of carbon dioxide to the atmosphere. This is largely due to the fact that these lakes take in tremendous amounts of organic materials from the surrounding land, and these are also converted in the water with the help of microorganisms.

Most of this organic matter is found in dissolved form in the water and consists of thousands of different molecules. The present study is the most comprehensive investigation ever of how the composition of these organic compounds is formed by processes in lakes and their catchments in the surrounding landscape. The researchers have analysed the make-up of the dissolved organic matter in 120 lakes from north to south in Sweden, as well as how its composition varies with the climate and other factors.

The study is a collaborative project involving a group of scientists from the Limnology program at Uppsala University and the Max Planck Institute for Marine Microbiology in Bremen/ University of Oldenburg. It is based on, among other things, data from a national environmental survey which monitors water chemistry and other properties of lakes. In addition, the researchers have performed detailed analyses of the organic material with the help of a powerful instrument in Germany – a high-resolution mass spectrometer.

The results show that not only biological diversity but also chemical diversity is regulated by various environmental factors. For example, in lakes with long water retention times, that is, where the water remains in place for a long period before being transported downstream, molecules from surrounding forests and wetlands are largely broken down.

- This leads to a completely different chemical composition, where the content of compounds that are produced by plankton in the lakes is more dominant, says Anne Kellerman, a doctoral candidate who is the lead author of the article.

By comparing lakes in different climates, we can get a picture of what chemical composition the water will have in a future climate with higher temperatures and more precipitation. This has consequences for how we should locate and design plants for drinking water production in the future.

- We're now continuing our investigations of the chemical diversity of nature by trying to figure out what mechanisms underlie the patterns we're finding. What determines that organic material in some cases is preserved in nature for a long time, and why is it degraded quickly under different circumstances? wonders Lars Tranvik.

This research is being conducted in a strong research environment funded by the Swedish Research Council Formas, "Color of Water", which is analysing current and future changes in the organic matter in lakes, and how this affects both drinking-water production and the ecology of the lakes.

###

Reference: Kellerman, A.M., Dittmar, T., Kothawala, D.N., and Tranvik. L. J Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nature Communications xxxxx
DOI: 10.1038/ncomms4804

Contact:

Lars Tranvik, professor, Limnology, department of Ecology and Genetics, mobile: 070 225830. lars.tranvik@ebc.uu.se

Anne Kellerman, PhD student, Limnology, department of Ecology and Genetics, mobile: 072 2168380. anne.kellerman@ebc.uu.se

Dolly Kothawala, researcher, Limnology, department of Ecology and Genetics, mobile: 073 5247371. dolly.kothawala@ebc.uu.se

Lars Tranvik | Eurek Alert!
Further information:
http://www.uu.se

Further reports about: Ecology Genetics Limnology composition diversity materials

More articles from Ecology, The Environment and Conservation:

nachricht New approach for environmental test on livestock drugs
27.07.2016 | Universität Zürich

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>