Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature's chemical diversity reflected in Swedish lakes

02.05.2014

It's not only the biology of lakes that varies with the climate and other environmental factors, it's also their chemistry. More knowledge about this is needed to understand the ecology of lakes and their role in the carbon cycle and the climate. Today an international research group led by Uppsala University is publishing a comprehensive study of the composition of organic compounds in the prestigious journal Nature Communications.

- Lake water is like a very thin broth with several thousand ingredients in the recipe, all with different properties. At the same time many of the molecules are common in a broad spectrum of different environments. For instance, in the extremely complex chemical mixture we have found the same components as colleagues have described from the Congo. And they react to environmental factors in the same way in the tropics as in Sweden, says Lars Tranvik, who directed the study.

All of the world's lakes cover only three per cent of the surface area of the continents, but they nevertheless play a huge role in the carbon cycle of the planet. Among other things, there is an outflow of carbon dioxide to the atmosphere. This is largely due to the fact that these lakes take in tremendous amounts of organic materials from the surrounding land, and these are also converted in the water with the help of microorganisms.

Most of this organic matter is found in dissolved form in the water and consists of thousands of different molecules. The present study is the most comprehensive investigation ever of how the composition of these organic compounds is formed by processes in lakes and their catchments in the surrounding landscape. The researchers have analysed the make-up of the dissolved organic matter in 120 lakes from north to south in Sweden, as well as how its composition varies with the climate and other factors.

The study is a collaborative project involving a group of scientists from the Limnology program at Uppsala University and the Max Planck Institute for Marine Microbiology in Bremen/ University of Oldenburg. It is based on, among other things, data from a national environmental survey which monitors water chemistry and other properties of lakes. In addition, the researchers have performed detailed analyses of the organic material with the help of a powerful instrument in Germany – a high-resolution mass spectrometer.

The results show that not only biological diversity but also chemical diversity is regulated by various environmental factors. For example, in lakes with long water retention times, that is, where the water remains in place for a long period before being transported downstream, molecules from surrounding forests and wetlands are largely broken down.

- This leads to a completely different chemical composition, where the content of compounds that are produced by plankton in the lakes is more dominant, says Anne Kellerman, a doctoral candidate who is the lead author of the article.

By comparing lakes in different climates, we can get a picture of what chemical composition the water will have in a future climate with higher temperatures and more precipitation. This has consequences for how we should locate and design plants for drinking water production in the future.

- We're now continuing our investigations of the chemical diversity of nature by trying to figure out what mechanisms underlie the patterns we're finding. What determines that organic material in some cases is preserved in nature for a long time, and why is it degraded quickly under different circumstances? wonders Lars Tranvik.

This research is being conducted in a strong research environment funded by the Swedish Research Council Formas, "Color of Water", which is analysing current and future changes in the organic matter in lakes, and how this affects both drinking-water production and the ecology of the lakes.

###

Reference: Kellerman, A.M., Dittmar, T., Kothawala, D.N., and Tranvik. L. J Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nature Communications xxxxx
DOI: 10.1038/ncomms4804

Contact:

Lars Tranvik, professor, Limnology, department of Ecology and Genetics, mobile: 070 225830. lars.tranvik@ebc.uu.se

Anne Kellerman, PhD student, Limnology, department of Ecology and Genetics, mobile: 072 2168380. anne.kellerman@ebc.uu.se

Dolly Kothawala, researcher, Limnology, department of Ecology and Genetics, mobile: 073 5247371. dolly.kothawala@ebc.uu.se

Lars Tranvik | Eurek Alert!
Further information:
http://www.uu.se

Further reports about: Ecology Genetics Limnology composition diversity materials

More articles from Ecology, The Environment and Conservation:

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>