Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The natural greenhouse gas sink is smaller than believed

An international team of scientists has uncovered an important part of the global greenhouse gas budget. This new analysis indicates that greenhouse gas uptake by continents is less optimistic than previously thought. The balance between carbon uptake by continents and their emissions of greenhouse gases is important because it indicates how much continents can compensate for human emissions of CO2 to the atmosphere.

Past analyses of carbon and greenhouse gas exchanges on continents have failed to account for the influence of lakes, impoundments, and running water. This study, published in the journal Science, shows that natural release of the potent greenhouse gas methane from inland waters may be far greater than previously known. By difference, the net absorption of greenhouse gases by natural land environments, such as forests, may therefore be at least 25 % smaller than thought.

This is the conclusion of a study by David Bastviken, Linköping University, Lars Tranvik, Uppsala University, John Downing, Iowa State University, Patrick Crill, Stockholm University, and Alex Enrich-Prast, University Federal of Rio de Janeiro.

The increased greenhouse effect is caused by human emissions of greenhouse gases. Some ecosystems, such as forests can absorb carbon dioxide and act as greenhouse gas sinks, which is important for the greenhouse gas balance and the climate. The role of freshwater environments, integrated into continental environments, has been unclear because of underestimates of the amount of continental water and a shortage of data on greenhouse gas emissions.

Methane emissions from lakes and running water occur naturally and should not be considered an environmental threat. These gas emissions have, however, been difficult to assess and are poorly understood.

- Small methane emissions from the surfaces of water bodies occur continuously, says David Bastviken, but much greater emissions occur suddenly, and with irregular timing, when methane bubbles from the sediment reach the atmosphere. Such fluxes have been difficult to measure.

The authors have summarized methane fluxes from 474 freshwater environments. They have also used updated estimates of the global area of inland waters. Based on these data, they estimated that methane emissions from the freshwaters of the world counter-balance 25 percent of the carbon dioxide absorbed by natural land environments. The large effect of aquatic methane emission is due to the large quantity of gas emission and the stronger greenhouse effect produced by methane molecules compared to carbon dioxide. One implication of this new accounting is that the greenhouse gas sink provided by forests and other land ecosystems is substantially smaller than hitherto believed.

The terrestrial sink may even be lower than we have calculated, says David Bastviken. Because it is difficult to measure methane bubble fluxes and the global area of freshwaters may still be underestimated, we have probably underestimated the methane emissions.

If we do not properly account for natural greenhouse gas sinks and emissions, we may misunderstand the urgency of reducing anthropogenic emissions.

A smaller continental greenhouse gas sink means that the capacity of natural systems to absorb greenhouse gases is very valuable.

- We have to take great care of the remaining forests and other natural greenhouse gas sinks, because we have already reduced their area through deforestation and other land conversions, David says. An accurate accounting of all components of the continental greenhouse gas budget, including the role of inland waters, will help us evaluate the greenhouse gas uptake by land ecosystems in relation to society’s greenhouse gas emissions.

Freshwater Methane Emissions Offset the Continental Carbon Sink
David Bastviken, Lars J. Tranvik, John A. Downing, Patrick M. Crill, Alex Enrich-Prast, Science 7 January 2011: 50. [DOI:10.1126/science.1196808]
Telephone to David Bastviken +46-73 4144970, e-mail
Lars Tranvik +46 -73 322 58 30, e-mail
Pressofficer Åke Hjelm; å;+46-13 28 13 95

Åke Hjelm | idw
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>