Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural gas boom will not slow climate change

16.10.2014

The recent natural gas boom due to the use of technologies such as fracking will not lead to a reduction of overall greenhouse gas emissions.

Burning natural gas produces only half the CO2 emissions as coal per unit of energy. However, as natural gas becomes abundant and therefore cheap, it adds to the total energy supply and only partially replaces coal, a study published in the journal Nature shows. This market effect erases the advantage of lower emissions from the natural gas itself, according to an unprecedented international comparison of computer simulations.

“The upshot is that abundant natural gas alone will not rescue us from climate change,” says the lead author Haewon McJeon of the Department of Energy’s Pacific Northwest National Laboratory (PNNL). Especially in the US advances such as hydraulic fracturing – pumping liquids into stone to break it up and release the gas, known as fracking – and horizontal drilling have led to bountiful natural gas production.

“Global deployment of advanced natural gas production technology could double or triple the global natural gas production by 2050”, McJeon says.

“The high hopes have been misguided” – market effects dominate

This might eventually lead to up to ten percent higher CO2 emissions by the middle of our century instead of lowering CO2 emissions. “The additional gas supply boosts its deployment, but the substitution of coal is rather limited and it might also substitute low-emission renewables and nuclear, according to our calculations," says co-author Nico Bauer of the Potsdam Institute for Climate Impact Research.

“The high hopes that natural gas will help reduce global warming because of technical superiority to coal turn out to be misguided because market effects are dominating. The main factor here is that an abundance of natural gas leads to a price drop and expansion of total primary energy supply.” This could lead to an overall increase of energy consumption and hence of emissions. Moreover, increased gas production comes with higher emissions of the powerful greenhouse gas methane from drilling leakages and pipelines.

The uncertainty surrounding gas supply is tremendous – the assessment of global natural gas resources have been revised over the past decade, but the economic implications up to now were not well understood.

Technological advances cannot replace climate policies

So five research groups from Germany, USA, Austria, Italy and Australia projected what the world might be like in 2050 with and without a natural gas boom. They used five different computer models that included not just energy use and production, but also the broader economy and the climate system.

"When we first saw little change in greenhouse gas emissions in our model, we thought we had made a mistake, because we were fully expecting to see a significant reduction in emissions," said scientist James ‘Jae’ Edmonds of PNNL's Joint Global Change Research Institute. "But when we saw all five modeling teams reporting little difference in climate change, we knew we were onto something."

"The findings show that effective climate stabilization can be achieved only through emissions pricing – this requires international political cooperation and binding agreements,“ comments Ottmar Edenhofer, chief economist of PIK and co-chair of the working group on mitigation of the Intergovernmental Panel on Climate Change (IPCC) that recently published a milestone assessment report. “Technological advances can reduce the costs of climate policies – but they cannot replace policies.”

Article: McJeon, H., Edmonds, J., Bauer, N., Clarke, L., Fisher, B., Flannery, B.P., Hilaire, J., Krey, V., Marangoni, G., Mi, R., Riahi, K., Rogner, H., Tavoni, M. (2014): Limited impact on decadal-scale climate change from increased use of natural gas. Nature (advance online publication) [DOI:10.1038/nature13837]

Weblink to the article once it is published: http://dx.doi.org/10.1038/nature13837

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Weitere Informationen:

http://dx.doi.org/10.1038/nature13837 - Weblink to the article once it is published

Jonas Viering | PIK Potsdam

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>