Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Multi-Year Nearshore Survey Of Antarctic Krill Reveals High Density, Stable Population In Shallow, Coastal Waters

05.08.2010
Small boat acoustic sampling augments larger vessel surveys and could impact krill fishery management

Using smaller vessels that allow access to shallow, nearshore waters, researchers from Stony Brook University and the Southwest Fisheries Science Center conducted the first multi-year survey of the population of Antarctic krill (Euphausia superba) in coastal waters near Livingston Island and discovered that nearshore waters had significantly higher krill biomass density than offshore waters. They also found that the nearshore waters had less interannual variation than offshore waters. These findings were published in the July 2010 issue of the Canadian Journal of Fisheries and Aquatic Sciences.

Antarctic krill are tiny shrimp-like organisms that are an integral part of the Southern Ocean food chain. Krill are an important food resource for penguins, seals, and some whales in the Southern Ocean, and are harvested for use in aquaculture feed and human dietary supplements.

“Nearshore krill biomass is generally most accessible and attractive to land-breeding predators as well as to human fishers competing for this valuable resource,” said Dr. Warren.

Because large research vessels cannot safely travel in shallow nearshore waters, previous population surveys of Antarctic krill were restricted to offshore sampling. With funding provided by the National Science Foundation Office of Polar Programs and the United States Antarctic Marine Living Resources program, Dr. Joseph Warren, assistant professor in the School of Marine and Atmospheric Sciences at Stony Brook University, and Dr. David Demer, leader of the Advanced Survey Technologies Program at the Southwest Fisheries Science Center, conducted six acoustic surveys from small boats in the nearshore waters north of Livingston Island, Antarctica. From 2000 through 2007, they examined the abundance and distribution of Antarctic krill in coastal waters within several miles of shore. Deploying their scientific equipment from a 6 m inflatable boat, Warren and Demer were able to carry out their measurements in water ranging from 500 to 2 m in depth. They compared their observations in the nearshore waters with those from offshore surveys of the western Scotia Sea conducted during the same year.

“Although the spatial area of our nearshore survey is quite small when compared with that of the entire Scotia Sea, the high and stable densities of krill in shallow water may be more important ecologically than the offshore krill,” said Dr. Warren.

About the School of Marine and Atmospheric Sciences at Stony Brook University
The School of Marine and Atmospheric Sciences (SoMAS) is the State University of New York's center for marine and atmospheric research, education, and public service. With more than 85 faculty and staff and more than 500 students engaged in interdisciplinary research and education, SoMAS is at the forefront of advancing knowledge and discovering and resolving environmental challenges affecting the oceans and atmosphere on both regional and global scales.

Leslie Taylor | EurekAlert!
Further information:
http://www.stonybrook.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>