Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moss helps chart the conquest of land by plants

05.02.2010
Molecular biology of drought tolerance comes into focus

Recent work at Washington University in St. Louis sheds light on one of the most important events in earth-history, the conquest of land by plants 480 million years ago.

No would-be colonizer could have survived on dry land without the ability to deal with dehydration, a major threat for organisms accustomed to soaking in water.

Clues to how the first land plants managed to avoid drying out might be provided by bryophytes, a group that includes the mosses, many of which retain remarkable drought tolerance. Some mosses can become so dry they crumble in the hand, but, if remoistened, will begin making proteins within minutes.

The work, published in the Jan. 29 issue of the journal Science, reveals several components of the signaling pathway that underlies the moss's Lazarus-like behavior.

Intriguingly, the flowering plants haven't entirely lost the ability to tolerate dessication: this tolerance has just been limited to their seeds, which dry out over winter and yet come to life in the spring.

The seed strategy

"We began by asking whether the moss Physcomitrella patens, which we have been using as a model system, employs different molecules or different regulatory systems than seeds. Or does the same mechanism underlie its desiccation tolerance and that of seeds?" says Ralph Quatrano, Ph.D., the Spencer T. Olin Professor of biology at WUSTL and senior author on the paper.

Earlier, Quatrano and others had showed that seeds depended on both the plant hormone ABA and the regulatory molecule ABI3 to survive drying.

Plant hormones, much like human hormones, are chemicals produced in small amounts that have a profound effect on growth and development. The release of one plant hormone, for example, causes bolting, the sudden growth of a floral stalk that signals the end of a leaf lettuce's tasty days.

ABI3 is a transcription factor, a molecule that binds to a specific DNA sequence next to the gene it regulates and controls the copying of that gene into messenger RNA, the first step in making a protein from the gene.

"The assumption," says Quatrano, "was that in the presence of ABI3, ABA triggers some genes to make proteins and then when you dry out the seed, those gene products protect the cells."

Looking for ABA and ABI3 in moss

In 1995 Quatrano and David Cove, Ph.D., a longtime colleague from the University of Leeds in the U.K., showed that ABA was at work in P. patens as well as in seeds.

In 2006 Heather Marella, a WUSTL graduate student, and Yoichi Sakata, Ph.D., a visiting scientist in Quatrano's lab, showed ABI3 is also present in P. patens. Whereas seed plants have only a single copy of the ABI3 gene, P. patens has at least three.

Marella and Sakata were able to delete the genes that code for ABI3 from the moss's genome. The resulting "knockout strains" would later prove useful in defining the separate roles of ABA and ABI3 in desiccation tolerance.

Technically, mosses tolerant to water stress can be either drought-tolerant or desiccation-tolerant. P. patens is drought-tolerant, able to withstand brief periods of water loss, but not desiccation-tolerant, that is not able to withstand total water loss.

Joseph Cho, Ph.D., a postdoctoral fellow from Korea in Quatrano's lab, showed that pre-treating P. patens with ABA toughened it up, making the drought-tolerant moss desiccation-tolerant. But pre-treatment with ABA didn't help the knockout mosses.

"So the first major conclusion of the paper," says Quatrano, "is that ABA alone cannot trigger desiccation tolerance. In mosses, as in seeds, both ABA and ABI3 are needed."

The protective genes

Next Quatrano's team set out to find the genes the ABA/ABI3 signaling pathway was controlling.

Abha Khandelwal, Ph.D., a postdoctoral fellow from India, identified 22 genes in wild-type moss that are upregulated and begin to churn out more protein product when the moss is treated with ABA.

"If you look at those genes," says Quatrano, "some are very similar to what you find in seeds. For example, some resemble the genes for the LEA (late embryogenesis abundant) proteins." These proteins, which accumulate late in seed development, are believed to protect seeds from cellular damage caused by water loss, such as the unfolding of proteins or the loss of membrane integrity.

Up until now everything had been playing out as expected. But then something unforeseen happened.

"We treated the knockout strains with ABA to see what would happen to gene expression," Quatrano says. "We thought that none of the genes would be expressed in these strains."

"To our surprise, all of them were upregulated."

"This didn't make a lot of sense," says Quatrano. "Why does the moss need ABI3 to become desiccation tolerant if only ABA is needed to upregulate the genes?"

The puzzle of ABI3

"To solve this puzzle, we looked at rehydration separately from dehydration. Both wild-type and knockout moss express the 22 genes during dehydration, producing messenger RNA to begin protein manufacture. The wild-type moss also expresses the genes during rehydration.

"But when we rehydrated the knockout moss, all of the messenger RNA disappeared within 15 minutes," says Quatrano.

"This said to us that ABI3 either stabilizes the messenger RNA molecules whose creation is triggered by ABA, or it somehow allows messenger RNA to continue to be synthesized during rehydration."

In other words, ABI3 doesn't so much prepare tissue for desiccation as it helps it rehydrate after desiccation.

"So the second major conclusion of the research," says Quatrano, "was the timing of ABI3's role in desiccation tolerance."

"Our work showed ABA was able to confer desiccation tolerance on a moss that wasn't desiccation tolerant, but that it needed ABI3 to do that. We also found that ABA triggered genes that we assume are essential for desiccation tolerance, but that ABI3 does not play a role in preparing for dessication and is instead essential for the stability of the gene products after rehydration."

What happened to seed plants?

"Our hypothesis," says Quatrano, "is that the first plants to move onto land were desiccation tolerant like P. patens and the other bryophytes, such as the hornworts and liverworts. As vascular plants evolved, they abandoned desiccation tolerance in favor of adaptations such as extensive root systems, waxy cuticles and stomata, that would allow them to prevent water loss rather than simply to survive it." The genes that confer desiccation tolerance were not lost, however. Instead their expression was sequestered within spores or seeds.

Could these genes and the signaling pathway that controls them be reactivated in the vegetative tissue of the plants?

"Our goal," says Quatrano, "is to characterize the entire regulatory network that controls the desiccation-tolerance system. Once we understand that network, we might be able to 'engineer' it into the vegetative tissue of seed plants to make them more tolerant to water loss."

"But this is all very speculative," he adds.

Still the vision of sun-burned fields of corn blushing green when long-awaiting rain finally relieves a drought is exciting to contemplate.

Diana Lutz | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: ABA ABI3 Quatrano RNA flowering plant messenger RNA plant hormone signaling pathway

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>