Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More precise sensors to identify ocean acidification in the Baltic Sea

26.06.2014

The new European project PINBAL aims at the development of a spectrophotometric pH-measurement system for monitoring in the Baltic Sea

Today the European project PINBAL started with a kick-off meeting at the Leibniz Institute of Baltic Sea Research in Warnemünde (IOW).

The four participating partners of the project met to organize the next steps for project implementation. Beside the IOW, which is also responsible for the project coordination, the University of Gothenburg, the Institute of Oceanology in Sopot and the enterprise CONTROS Systems and Solution participate in PINBAL.

Since the beginning of the industrial era a considerable part of the increasing CO2 emissions dissolved into the ocean. As a result the pH value of the World´s Ocean has been decreased by 0.1. The International Panel of Climate Change (IPCC) considers the pH value to be decreased from 8.1 today to 7.7 in 2100 with severe consequences for the marine environment if the CO2 production follows a “business as usual” scheme.

For the Baltic Sea with its variable salinity, high concentrations of organic substances and the occurrence of hydrogen sulfide in the deep waters there are no suitable measuring methods up to day, to detect longtime variations. The PINBAL project group wants to bridge this gap.

Beside the monitoring demands, there is a strong interest of basic research, too, in such a development of a highly precise measuring method for the determination of the pH value in order to improve the option for investigating the Baltic Sea carbon dioxide turnovers.

Gregor Rehder, project coordinator and marine chemist at the IOW, describes the aims of the project. ”We want to develop a reliable and highly precise system to be deployed on so called voluntary observing ships (VOS).”

In recent years these VOS – cargo ships or ferries – have been equipped with automated measurement and sampling systems to create an efficient monitoring system for environmental parameters in surface waters of the Baltic Sea. They shall be the carrier of the future development as well.

PINBAL will receive funding for the next three years from BONUS (Art 185) funded jointly from the European Union’s Seventh Programme for research, technological development and demonstration, and from Baltic Sea national funding institutions. 

Contact:

Prof. Dr. Gregor Rehder, Department of Marine Chemistry, Leibniz-Institute for Baltic Sea Research Warnemünde (IOW), (Phone: +49 381 / 5197 336, Email: gregor.rehder@io-warnemuende.de)

Dr. Barbara Hentzsch, Public Relation, IOW (Phone: +49 381 / 5197 102, Email: barbara.hentzsch@io-warnemuende.de)

Nils Ehrenberg, Public Relation, IOW (Phone: +49 381 / 5197 106, Email: nils.ehrenberg@io-warnemuende.de)

Dipl.-Phys. Peer Fietzek, CONTROS Systems & Solutions

Prof. Dr. Leif Anderson, University of Gothenburg

Dr. Karol Kulinski, Institute for Oceanology, Polish Academy of Science, Sopot

The IOW is a member of the Leibniz Association to which 89 research institutes and scientific infrastructure facilities for research currently belong. The focus of the Leibniz Institutes ranges from Natural, Engineering and Environmental Science to Economic, Social, and Space Sciences and to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 17.200 people, of whom 8.200 are scientists, of which 3.300 are junior scientists. The total budget of the Institutes is more than 1.5 billion Euros. Third-party funds amount to approximately € 330 million per year.

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.io-warnemuende.de

More articles from Ecology, The Environment and Conservation:

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht The European pet trade is jeopardising the survival of rare reptile species
13.07.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>