Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More precise sensors to identify ocean acidification in the Baltic Sea

26.06.2014

The new European project PINBAL aims at the development of a spectrophotometric pH-measurement system for monitoring in the Baltic Sea

Today the European project PINBAL started with a kick-off meeting at the Leibniz Institute of Baltic Sea Research in Warnemünde (IOW).

The four participating partners of the project met to organize the next steps for project implementation. Beside the IOW, which is also responsible for the project coordination, the University of Gothenburg, the Institute of Oceanology in Sopot and the enterprise CONTROS Systems and Solution participate in PINBAL.

Since the beginning of the industrial era a considerable part of the increasing CO2 emissions dissolved into the ocean. As a result the pH value of the World´s Ocean has been decreased by 0.1. The International Panel of Climate Change (IPCC) considers the pH value to be decreased from 8.1 today to 7.7 in 2100 with severe consequences for the marine environment if the CO2 production follows a “business as usual” scheme.

For the Baltic Sea with its variable salinity, high concentrations of organic substances and the occurrence of hydrogen sulfide in the deep waters there are no suitable measuring methods up to day, to detect longtime variations. The PINBAL project group wants to bridge this gap.

Beside the monitoring demands, there is a strong interest of basic research, too, in such a development of a highly precise measuring method for the determination of the pH value in order to improve the option for investigating the Baltic Sea carbon dioxide turnovers.

Gregor Rehder, project coordinator and marine chemist at the IOW, describes the aims of the project. ”We want to develop a reliable and highly precise system to be deployed on so called voluntary observing ships (VOS).”

In recent years these VOS – cargo ships or ferries – have been equipped with automated measurement and sampling systems to create an efficient monitoring system for environmental parameters in surface waters of the Baltic Sea. They shall be the carrier of the future development as well.

PINBAL will receive funding for the next three years from BONUS (Art 185) funded jointly from the European Union’s Seventh Programme for research, technological development and demonstration, and from Baltic Sea national funding institutions. 

Contact:

Prof. Dr. Gregor Rehder, Department of Marine Chemistry, Leibniz-Institute for Baltic Sea Research Warnemünde (IOW), (Phone: +49 381 / 5197 336, Email: gregor.rehder@io-warnemuende.de)

Dr. Barbara Hentzsch, Public Relation, IOW (Phone: +49 381 / 5197 102, Email: barbara.hentzsch@io-warnemuende.de)

Nils Ehrenberg, Public Relation, IOW (Phone: +49 381 / 5197 106, Email: nils.ehrenberg@io-warnemuende.de)

Dipl.-Phys. Peer Fietzek, CONTROS Systems & Solutions

Prof. Dr. Leif Anderson, University of Gothenburg

Dr. Karol Kulinski, Institute for Oceanology, Polish Academy of Science, Sopot

The IOW is a member of the Leibniz Association to which 89 research institutes and scientific infrastructure facilities for research currently belong. The focus of the Leibniz Institutes ranges from Natural, Engineering and Environmental Science to Economic, Social, and Space Sciences and to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 17.200 people, of whom 8.200 are scientists, of which 3.300 are junior scientists. The total budget of the Institutes is more than 1.5 billion Euros. Third-party funds amount to approximately € 330 million per year.

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.io-warnemuende.de

More articles from Ecology, The Environment and Conservation:

nachricht Protecting fisheries from evolutionary change
27.04.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht From waste to resource – how can we turn garbage into gold?
27.04.2016 | DLR Projektträger

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

Im Focus: Measuring the heat capacity of condensed light

Liquid water is a very good heat storage medium – anyone with a Thermos bottle knows that. However, as soon as water boils or freezes, its storage capacity drops precipitously. Physicists at the University of Bonn have now observed very similar behavior in a gas of light particles. Their findings can be used, for example, to produce ultra-precise thermometers. The work appears in the prestigious technical journal "Nature Communications".

Water vapor becomes liquid under 100 degrees Celsius – it condenses. Physicists speak of a phase transition. In this process, certain thermodynamic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Possible Extragalactic Source of High-Energy Neutrinos

28.04.2016 | Physics and Astronomy

University of Illinois researchers create 1-step graphene patterning method

28.04.2016 | Materials Sciences

Rapid adaptation to a changing environment

28.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>