Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT research could help predict red tide

23.02.2009
Team explains how thin layers of tiny organisms form at sea

Not far beneath the ocean's surface, tiny phytoplankton swimming upward in a daily commute toward morning light sometimes encounter the watery equivalent of Rod Serling's Twilight Zone: a sharp variation in marine currents that traps billions of these single-celled organisms and sends them tumbling until a shift in wind or tide alters the currents and sets them free.

Scientists are aware of these thin layers of single-celled creatures and their enormous ecological ramifications, but until now, they knew little about the mechanisms responsible for their formation.

The explanation by researchers in MIT's Department of Civil and Environmental Engineering of how these common, startlingly dense layers of photosynthetic phytoplankton form, moves the scientific community a step closer to being able to predict harmful algal blooms, a well-known example of which is red tide. The work also opens new perspectives on other phenomena, like predatory feeding by larger organisms at these ecological hotspots.

"Phytoplankton are incredibly small. You would have to stack about 10 back to back to equal the width of a single human hair," said PhD student William Durham, co-author on a paper appearing in the Feb. 20 issue of Science. "But despite their small size, they play an outsized role in the environment: they form the base of the marine food web and cumulatively produce half the world's oxygen. Many species can swim, but this fact is often neglected by researchers because phytoplankton are slow compared to ocean currents. However, we have shown that their motility can play a crucial role by concentrating them into dense assemblages, known as thin layers."

In the Science paper, Durham, Professor Roman Stocker and University of Arizona physics Professor John Kessler explain how adjacent layers of water moving at different speeds produce a "shear" flow that traps the phytoplankton as they swim into it. These layers form in the top 50 meters of the ocean and can be anywhere from a few centimeters to a couple of meters thick, span several kilometers horizontally and last hours, days or weeks.

"Our research pinpoints a mechanism for the formation of these thin layers of phytoplankton, which are analogous to watering holes in a savanna — localized areas of concentrated resources that draw a wide range of organisms and thus play a disproportionate role in the ecological landscape," said Stocker, the Doherty Assistant Professor of Ocean Utilization at MIT.

Because motile phytoplankton have different morphologies and swimming abilities, one species may be able to swim through a layer of shear that will capture another. This means that each species could be trapped in a different level of shear, creating a sort of oceanic layered-cake effect, a boon for zooplankton or young fish that feed on specific species.

And when a toxic species of phytoplankton gets trapped in a thin layer, that layer can spawn a harmful algal bloom — an explosion in the population of toxic phytoplankton that sickens or kills the larger animals that ingest the cells. Harmful algal blooms are a major source of social and economic concern, particularly near coastal areas, because they are becoming more frequent and cause billions of dollars in annual losses to fishing and recreational industries worldwide.

In a perspective piece accompanying the paper in Science, scientist Daniel Grünbaum of the University of Washington writes: "The authors demonstrate a sort of Peter Principle for algae migrating in shear: cells swim up until they reach their level of instability. At this critical shear level, cells can swim in, but they cannot swim out. The resulting aggregation, in what is arguably an unfavorable microenvironment, may have widespread consequences, as harmful blooms of toxic algae often take the form of thin layers."

Using video-microscopy, Durham and Stocker were able to track the movements of individual cells as they become trapped in the layers of shear. They also modeled the movements of the swimming cells mathematically and proved that they cannot escape these layers. Once trapped, they're at the mercy of the flow, and must wait for the shear to decrease before they can swim out and exit the Twilight Zone.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>