Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Migrating animals' pee affects ocean chemistry

10.10.2014

The largest migration on the planet is the movement of small animals from the surface of the open ocean, where they feed on plants under cover of darkness, to the sunless depths where they hide from predators during the day.

University of Washington researchers have found that this regular migration helps shape our oceans. During the daylight hours below the surface the animals release ammonia, the equivalent of our urine, that turns out to play a significant role in marine chemistry, particularly in low-oxygen zones. Results are published online this week in the Proceedings of the National Academy of Sciences.

"I'm very fascinated by these massive migrations," said lead author Daniele Bianchi, a postdoctoral researcher in the UW School of Oceanography. "To me, it's exciting to think about the effects of animal behavior on a large scale in the ocean."

One might not think that peeing into the vastness of the oceans could have an effect. But the animals – which include tiny zooplankton, crustaceans such as krill, and fish such as lanternfish up to a few inches long – compensate for their small size with huge abundance throughout the world's oceans.

After a nighttime feast near the surface, these small creatures take a couple of hours to swim about 650 to 2,000 feet (200 to 600 meters) deep. Solid waste falls as pellets. The liquid waste is emitted more gradually.

In earlier work, Bianchi made the surprising finding that the animals spend most of their day in low-oxygen water. Marine bacteria consume oxygen as they decompose sinking dead material, creating low-oxygen zones a few hundred feet below the surface.

"The animals really seem to stop in low-oxygen regions, which is sort of puzzling," Bianchi said. Some speculated these zones might protect them from larger predators.

The earlier study also showed that animals actually contribute to these low-oxygen zones by using the little remaining oxygen to breathe.

Researchers next wondered about their other bodily functions.

For the new study, authors mined data from underwater sonar surveys to calculate how many animals are migrating to which depths, and where. Next they gauged the combined effect of their daytime digestion.

Results show that in certain parts of the ocean, ammonia released from animals drives a big part of the oxygen-free conversion of ammonium and other molecules to nitrogen gas, a key chemical transition.

"We still think bacteria do most of the job, but the effect of animals is enough to alter the rates of these reactions and maybe help explain some of the measurements," Bianchi said.

Inside low-oxygen zones, it's still mysterious how bacteria turn so much nitrogen-based ammonia into tight pairs of nitrogen atoms, like those found in air, which cannot be used by plants or animals. The conversion is important because it determines how much nitrogen-based fertilizer remains to support life in the world's oceans.

Researchers typically model low-oxygen zones using factors such as ocean currents, weather and bacterial growth. The new paper, Bianchi said, shows that diving animals, though more difficult to model, also play a role in marine chemistry.

The ocean's low-oxygen zones are projected to expand under climate change, as warmer waters hold less oxygen and decrease oxygen content below the surface. Understanding these zones is thus important for predicting what might happen to the oceans under climate change.

###

The research was funded by the Canadian Institute for Advanced Research, the Canadian Foundation for Innovation and the U.S. National Science Foundation. Co-authors are Andrew Babbin at Princeton University and Eric Galbraith at Canada's McGill University.

For more information, contact Bianchi at 206-221-4402 or danbian@uw.edu

Hannah Hickey | Eurek Alert!
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>