Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Migrating animals' pee affects ocean chemistry


The largest migration on the planet is the movement of small animals from the surface of the open ocean, where they feed on plants under cover of darkness, to the sunless depths where they hide from predators during the day.

University of Washington researchers have found that this regular migration helps shape our oceans. During the daylight hours below the surface the animals release ammonia, the equivalent of our urine, that turns out to play a significant role in marine chemistry, particularly in low-oxygen zones. Results are published online this week in the Proceedings of the National Academy of Sciences.

"I'm very fascinated by these massive migrations," said lead author Daniele Bianchi, a postdoctoral researcher in the UW School of Oceanography. "To me, it's exciting to think about the effects of animal behavior on a large scale in the ocean."

One might not think that peeing into the vastness of the oceans could have an effect. But the animals – which include tiny zooplankton, crustaceans such as krill, and fish such as lanternfish up to a few inches long – compensate for their small size with huge abundance throughout the world's oceans.

After a nighttime feast near the surface, these small creatures take a couple of hours to swim about 650 to 2,000 feet (200 to 600 meters) deep. Solid waste falls as pellets. The liquid waste is emitted more gradually.

In earlier work, Bianchi made the surprising finding that the animals spend most of their day in low-oxygen water. Marine bacteria consume oxygen as they decompose sinking dead material, creating low-oxygen zones a few hundred feet below the surface.

"The animals really seem to stop in low-oxygen regions, which is sort of puzzling," Bianchi said. Some speculated these zones might protect them from larger predators.

The earlier study also showed that animals actually contribute to these low-oxygen zones by using the little remaining oxygen to breathe.

Researchers next wondered about their other bodily functions.

For the new study, authors mined data from underwater sonar surveys to calculate how many animals are migrating to which depths, and where. Next they gauged the combined effect of their daytime digestion.

Results show that in certain parts of the ocean, ammonia released from animals drives a big part of the oxygen-free conversion of ammonium and other molecules to nitrogen gas, a key chemical transition.

"We still think bacteria do most of the job, but the effect of animals is enough to alter the rates of these reactions and maybe help explain some of the measurements," Bianchi said.

Inside low-oxygen zones, it's still mysterious how bacteria turn so much nitrogen-based ammonia into tight pairs of nitrogen atoms, like those found in air, which cannot be used by plants or animals. The conversion is important because it determines how much nitrogen-based fertilizer remains to support life in the world's oceans.

Researchers typically model low-oxygen zones using factors such as ocean currents, weather and bacterial growth. The new paper, Bianchi said, shows that diving animals, though more difficult to model, also play a role in marine chemistry.

The ocean's low-oxygen zones are projected to expand under climate change, as warmer waters hold less oxygen and decrease oxygen content below the surface. Understanding these zones is thus important for predicting what might happen to the oceans under climate change.


The research was funded by the Canadian Institute for Advanced Research, the Canadian Foundation for Innovation and the U.S. National Science Foundation. Co-authors are Andrew Babbin at Princeton University and Eric Galbraith at Canada's McGill University.

For more information, contact Bianchi at 206-221-4402 or

Hannah Hickey | Eurek Alert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>