Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Midge bones in lake sediments reveal fish history

12.05.2009
The mouth parts of the phantom midge are microscopic. But in the hands of scientists from the Department of Zoology at the University of Gothenburg these midge bones become a time machine that can document 200 years of acidification and fish elimination in Swedish lakes.

Acidification of land and water is one of the greatest environmental problems of modern time. Many European lakes still show obvious signs of acidification, and have lead to extensive fish elimination and severely reduced biological diversity.

arlier research has shown a clear connection between fish elimination and larvae of the phantom midge, where a reduction in the fish population can lead to an explosion of phantom midge larvae in acidified lakes.

This invasion of midges forms the basis of a unique research project at the University of Gothenburg. Researchers can now reconstruct the development of fish population in acidified lakes and learn how the population has changed in past centuries by investigating mouth parts of phantom midges that have been preserved in lake sediments.

"What we do can, in fact, be viewed as a journey through time, in which we reconstruct the history of a lake from the early 19th century onwards. We analyse the occurrence of the phantom midge mouth parts and determine which species are present in the sediments. This allow us to determine whether the number of fish has increased or decreased through history, whether fish have been eliminated completely and disappeared from the lake, and we can also give a rough description of when different fish species have been eliminated during periods of severe acidification", says Fredrik Palm, doctoral student and researcher in the Department of Zoology at the University of Gothenburg.

This method of investigation makes it possible to study the effects of acidification in lakes in which samples have not previously been taken, and where historical information about the fish population is not available.

"Such studies, in turn, make it possible to decide how the biological restoration of an acid lake should be carried out, since it reveals the structure of a fish population that should be the restoration target, in order for the lake to be considered fully restored", says Fredrik Palm.

The historical perspective of the method also makes it possible to survey natural variations in lake ecosystems. In this way, scientists can estimate human impact on lake ecosystems and relate this to climate change, eutrophication and acidification. Fredrik Palm is carrying out his studies in Västra Götaland and Bohuslän, with a special focus on the Gårdsjön area in Ucklum. This region has been an important centre of Swedish acidification research for decades.

Contact:
Fredrik Palm, Department of Zoology, University of Gothenburg
Tel: 46 (0)31 786 3668
Mobile: 46 (0)703 756668
fredrik.palm@zool.gu.se
BY: Krister Svahn
46 (0)31 786 49 12
krister.svahn@scinece.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se/
http://www.science.gu.se/english/News/News_detail?contentId=878399

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>