Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopic Organism Plays a Big Role in Ocean Carbon Cycling, Scripps Scientists Discover

25.04.2014

Taken-for-granted ocean carbon consumption highlights key role of individual species

It’s broadly understood that the world’s oceans play a crucial role in the global-scale cycling and exchange of carbon between Earth’s ecosystems and atmosphere. Now scientists at Scripps Institution of Oceanography at UC San Diego have taken a leap forward in understanding the microscopic underpinnings of these processes.

When phytoplankton use carbon dioxide to make new cells, a substantial portion of that cellular material is released into the sea as a buffet of edible molecules collectively called “dissolved organic carbon.” The majority of these molecules are eventually eaten by microscopic marine bacteria, used for energy, and recycled back into carbon dioxide as the bacteria exhale. The amount of carbon that remains as cell material determines the role that ocean biology plays in locking up atmospheric carbon dioxide in the ocean.

Thus, these “recycling” bacteria play an important role in regulating how much of the planet’s carbon dioxide is stored in the oceans. The detailed mechanisms of how the oceans contribute to this global carbon cycle at the microscopic scale, and which microbes have a leadership role in the breakdown process, are complex and convoluted problems to solve.

In a study published in the Proceedings of the National Academy of Sciences, Scripps scientists have pinpointed a bacterium that appears to play a dominant role in carbon consumption. Scripps’s Byron Pedler, Lihini Aluwihare, and Farooq Azam found that a single bacterium called Alteromonas could consume as much dissolved organic carbon as a diverse community of organisms.

“This was a surprising result,” said Pedler. “Because this pool of carbon is comprised of an extremely diverse set of molecules, we believed that many different microbes with complementary abilities would be required to breakdown this material, but it appears that individual species may be pulling more weight than others when it comes to carbon cycling.”

Pedler, a marine biology graduate student at Scripps, spent several years working with Scripps marine microbiologist Azam and chemical oceanographer Aluwihare in designing a system that would precisely measure carbon consumption by individual bacterial species. Because carbon in organic matter is essentially all around us, the most challenging part of conducting these experiments is avoiding contamination.

“Much of the carbon cycling in the ocean happens unseen to the naked eye, and it involves a complex mix of processes involving microbes and molecules,” said Azam, a distinguished professor of marine microbiology. “The complexity and challenge is not just that we can’t see it but that there’s an enormous number of different molecules involved. The consequences of these microbial interactions are critically important for the global carbon cycle, and for us.”

By demonstrating that key individual species within the ecosystem can play a disproportionally large role in carbon cycling, this study helps bring us a step closer to understanding the function these microbes play in larger questions of climate warming and increased acidity in the ocean.

“In order to predict how ecosystems will react when you heat up the planet or acidify the ocean, we first need to understand the mechanisms of everyday carbon cycling—who’s involved and how are they doing it?” said Pedler. “Now that we have this model organism that we know contributes to ocean carbon cycling, and a model experimental system to study the process, we can probe further to understand the biochemical and genetic requirements for the breakdown of this carbon pool in the ocean.” 

While the new finding exposes the unexpected capability of a significant species in carbon cycling, the scientists say there is much more to the story since whole communities of microbes may interact together or live symbiotically in the microscopic ecosystems of the sea.

Pedler, Aluwihare, and Azam are now developing experiments to test other microbes and their individual abilities to consume carbon.

The study was supported by the Gordon and Betty Moore Foundation Marine Microbiology Initiative through grant GBMF2758 and the National Science Foundation.

# # #

The Gordon and Betty Moore Foundation believes in bold ideas that create enduring impact in the areas of science, environmental conservation and patient care. Intel co-founder Gordon and his wife Betty established the foundation to create positive change around the world and at home in the San Francisco Bay Area. Science looks for opportunities to transform–or even create–entire fields by investing in early- stage research, emerging fields and top research scientists. Our environmental conservation efforts promote sustainability, protect critical ecological systems and align conservation needs with human development. Patient care focuses on eliminating preventable harms and unnecessary healthcare costs through meaningful engagement of patients and their families in a supportive, redesigned healthcare system. Visit us at www.Moore.orgor follow @MooreScientific.


An atomic force microscope image of the bacterial strain AltSIO (Alteromonas Scripps Institution of Oceanography)

Note to broadcast and cable producers: University of California, San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or email the media contact listed above to arrange an interview.
 
About Scripps Institution of Oceanography Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today on every continent and in every ocean. The institution has a staff of about 1,400 and annual expenditures of approximately $170 million from federal, state, and private sources. Scripps operates robotic networks and one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 425,000 visitors each year. Learn more at scripps.ucsd.edu.

Mario Aguilera or Robert Monroe | Eurek Alert!
Further information:
https://scripps.ucsd.edu/news/microscopic-organism-plays-big-role-ocean-carbon-cycling-scripps-scientists-discover

Further reports about: Ocean Oceanography Scripps ecosystems experiments mechanisms microbes oceans species

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>