Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microplastic pollution discovered in St. Lawrence River sediments

19.09.2014

Previously undocumented in North American rivers, concentrations of microplastic particles in the St. Lawrence are as high as has been observed in the world’s most contaminated marine sediments.

A team of researchers from McGill University and the Quebec government have discovered microplastics (in the form of polyethylene ‘microbeads’, <2 mm diameter) widely distributed across the bottom of the St. Lawrence River, the first time such pollutants have been found in freshwater sediments. Their research was published this month in the Canadian Journal of Fisheries and Aquatic Sciences.


Caption: Microbeads collected from St. Lawrence River sediments in summer 2013. (Photo by Guy l’Heureux)

The microbeads likely originate from cosmetics, household cleansers, or industrial cleansers, to which they are commonly added as abrasives. Owing to their small size and buoyancy, they may readily pass through sewage treatment plants.  Microplastics are a global contaminant in the world’s oceans, but have only recently been detected in the surface waters of lakes and rivers.

Researchers lowered a steel grab from a boat to collect sediment from ten locations along a 320 km section of the river from Lake St. Francis to Québec City.  Microbeads were sieved from the sediment, and then sorted and counted under a microscope. “We found them in nearly every grab sample taken. The perfect multi-coloured spheres stood out from natural sediment, even though they were the size of sand grains,” said the lead author of the study, Rowshyra Castañeda, a former McGill MSc student (now at University of Toronto).

At some locations, the researchers measured over 1000 microbeads per liter of sediment, a magnitude that rivals the world’s most contaminated ocean sediments.  “We were surprised to find such concentrations at the bottom of a river”, says McGill professor Anthony Ricciardi, who supervised the study. “It was previously assumed that floating microplastics are flushed through rivers to the sea. Now we have evidence that rivers can act as a sink for this pollution.”  

The prevalence of microplastics in the St. Lawrence River raises the possibility that they are being consumed by fish and other animals.  The environmental effects of microplastics are poorly known; but the surfaces of such particles attract chemical pollutants, including PCBs, which can be transferred to animals that ingest the plastics.  “At present, we cannot predict the consequences of the accumulation of these non-biodegradable particles in freshwater ecosystems” added Ricciardi, whose lab is investigating whether the microbeads are being consumed by fish in the river.

With growing recognition of microplastics as an emerging threat to waterways, some U.S. states (Illinois, New York, Minnesota, Ohio, and California) have recently adopted or are considering legislation that bans the use of plastic microbeads in cosmetics. No such legislation has yet been proposed in Canada.

To access the full article:
R.A. Castañeda, S. Avlijas, M.A. Simard, A. Ricciardi. 2014. “Microplastic pollution in St. Lawrence River sediments”. Canadian Journal of Fisheries and Aquatic Sciences. www.nrcresearchpress.com/doi/abs/10.1139/cjfas-2014-0281 

Media contacts:
Dr. Anthony Ricciardi 
514-398-4089
tony.ricciardi@mcgill.ca  

Rowshyra Castañeda (French interviews)
514-497-3754
rowshyra.castaneda@mail.mcgill.ca

About the Canadian Journal of Fisheries and Aquatic Sciences Published since 1901 (under various titles), the Canadian Journal of Fisheries and Aquatic Sciences (CJFAS) is one of the world’s top fisheries journals and is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. CJFAS is published by Canadian Science Publishing and is part of the prestigious NRC Research Press journal collection.
 
Disclaimer: Canadian Science Publishing (CSP) publishes the NRC Research Press journals but is not affiliated with the National Research Council of Canada. Papers published by CSP are peer-reviewed by experts in their field. The views of the authors in no way reflect the opinions of CSP or the NRC. Requests for commentary about the contents of any study should be directed to the authors.)

Jenny Ryan | Eurek Alert!
Further information:
http://www.cdnsciencepub.com/news-and-events/press-releases/CJFAS_PR_microbeads.aspx

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>