Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microplastic pollution discovered in St. Lawrence River sediments

19.09.2014

Previously undocumented in North American rivers, concentrations of microplastic particles in the St. Lawrence are as high as has been observed in the world’s most contaminated marine sediments.

A team of researchers from McGill University and the Quebec government have discovered microplastics (in the form of polyethylene ‘microbeads’, <2 mm diameter) widely distributed across the bottom of the St. Lawrence River, the first time such pollutants have been found in freshwater sediments. Their research was published this month in the Canadian Journal of Fisheries and Aquatic Sciences.


Caption: Microbeads collected from St. Lawrence River sediments in summer 2013. (Photo by Guy l’Heureux)

The microbeads likely originate from cosmetics, household cleansers, or industrial cleansers, to which they are commonly added as abrasives. Owing to their small size and buoyancy, they may readily pass through sewage treatment plants.  Microplastics are a global contaminant in the world’s oceans, but have only recently been detected in the surface waters of lakes and rivers.

Researchers lowered a steel grab from a boat to collect sediment from ten locations along a 320 km section of the river from Lake St. Francis to Québec City.  Microbeads were sieved from the sediment, and then sorted and counted under a microscope. “We found them in nearly every grab sample taken. The perfect multi-coloured spheres stood out from natural sediment, even though they were the size of sand grains,” said the lead author of the study, Rowshyra Castañeda, a former McGill MSc student (now at University of Toronto).

At some locations, the researchers measured over 1000 microbeads per liter of sediment, a magnitude that rivals the world’s most contaminated ocean sediments.  “We were surprised to find such concentrations at the bottom of a river”, says McGill professor Anthony Ricciardi, who supervised the study. “It was previously assumed that floating microplastics are flushed through rivers to the sea. Now we have evidence that rivers can act as a sink for this pollution.”  

The prevalence of microplastics in the St. Lawrence River raises the possibility that they are being consumed by fish and other animals.  The environmental effects of microplastics are poorly known; but the surfaces of such particles attract chemical pollutants, including PCBs, which can be transferred to animals that ingest the plastics.  “At present, we cannot predict the consequences of the accumulation of these non-biodegradable particles in freshwater ecosystems” added Ricciardi, whose lab is investigating whether the microbeads are being consumed by fish in the river.

With growing recognition of microplastics as an emerging threat to waterways, some U.S. states (Illinois, New York, Minnesota, Ohio, and California) have recently adopted or are considering legislation that bans the use of plastic microbeads in cosmetics. No such legislation has yet been proposed in Canada.

To access the full article:
R.A. Castañeda, S. Avlijas, M.A. Simard, A. Ricciardi. 2014. “Microplastic pollution in St. Lawrence River sediments”. Canadian Journal of Fisheries and Aquatic Sciences. www.nrcresearchpress.com/doi/abs/10.1139/cjfas-2014-0281 

Media contacts:
Dr. Anthony Ricciardi 
514-398-4089
tony.ricciardi@mcgill.ca  

Rowshyra Castañeda (French interviews)
514-497-3754
rowshyra.castaneda@mail.mcgill.ca

About the Canadian Journal of Fisheries and Aquatic Sciences Published since 1901 (under various titles), the Canadian Journal of Fisheries and Aquatic Sciences (CJFAS) is one of the world’s top fisheries journals and is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. CJFAS is published by Canadian Science Publishing and is part of the prestigious NRC Research Press journal collection.
 
Disclaimer: Canadian Science Publishing (CSP) publishes the NRC Research Press journals but is not affiliated with the National Research Council of Canada. Papers published by CSP are peer-reviewed by experts in their field. The views of the authors in no way reflect the opinions of CSP or the NRC. Requests for commentary about the contents of any study should be directed to the authors.)

Jenny Ryan | Eurek Alert!
Further information:
http://www.cdnsciencepub.com/news-and-events/press-releases/CJFAS_PR_microbeads.aspx

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>