Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbe community changes may reduce Amazon’s ability to lock up carbon dioxide

08.01.2014
UT Arlington researchers focusing on the Amazon recently found that widespread conversion from rainforest to pastureland has significant effects on microorganism communities that may lead to a reduction in the region’s role as a reservoir for greenhouse gas.

The Amazon rainforest is the largest terrestrial reservoir or “sink” for carbon dioxide, a gas that has been linked to climate change. Through photosynthesis, the Amazon absorbs 1.5 billion tons of carbon dioxide from the atmosphere every year in a process that requires input of nitrogen. That nitrogen, for the most part, comes from a process called nitrogen fixation – essentially microbes pulling nitrogen form the air into the soil.

The new paper, featured in the January issue of Applied and Environmental Microbiology, looks for the first time at the reaction of free-living nitrogen-fixing microorganisms called diazotrophs to the deforestation. Jorge Rodrigues, an assistant professor of biology at The University of Texas at Arlington, organized the work. Babur S. Mirza, formerly a postdoctoral fellow in the Rodrigues lab, is the paper's lead author.

“This study shows that although the diversity of diazotrophic microorganisms remains the same with the conversion from forest to pasture, the types of species found are different,” said Rodrigues. “Our next step is to measure how the rates of biological nitrogen fixation are influenced by community changes. Because the carbon and nitrogen cycles are so strongly linked, our previous results indicated that changes in carbon dioxide sequestration will occur"

Rodrigues’ team gathered samples of soil from the Fazenda Nova Vida site in Rondonia, Brazil, one of three states in the country that accounted for more than 85 percent of deforestation from 1996 to 2005. They analyzed soil from a primary forest, a pasture established in 2004 and a secondary forest that resulted from the abandonment of a pasture in 1999.

The team used DNA analysis, specifically the nifH gene that is characteristic of diazotrophs, to measure the communities in the samples.

Rodrigues said researchers were surprised to find a ten-fold increase in the number of diazotrophic microorganisms in the pasture established in 2004, when compared to the primary forests. They theorize the pasture ecosystems rely on the diazotrophs more for nitrogen because of the continuous grazing from cattle, requiring constant regrowth of grasses.

“We observed a complete shift in the diazotrophic microbial community composition in response to the Amazon rain forest conversion to a pasture,” Mirza said. “These differences an be attributed to the shift in the above ground plant community because we did see partial recovery of diazotroph community composition in the secondary forest, which have more plant species as compared to pasture.”

Mirza said researchers are continuing their work with more more sophisticated sequencing technologies and in-depth sampling.

Other co-authors on the new paper include Chotima Potisap, a visiting Ph.D. student from Khon Kaen University in Thailand; Klaus Nüsslein, professor of microbiology at the University of Massachusetts; and Brendan J.M. Bohannan, professor at the Institute of Ecology and Evolution, University of Oregon.

The paper is titled “Response of Free-Living Nitrogen Fixing Microorganisms to Land Use Change in the Amazon Rainforest” and is available online here: http://aem.asm.org/content/early/2013/10/21/AEM.02362-13.full.pdf+html.

Despite worries about the effect these changes to the microbial communities may have on the carbon cycle, Rodrigues said there are some encouraging results. After pastures were abandoned and a secondary forest grew, partial restoration of the original diazotrophic communities was achieved, researchers said.

Growth of secondary forest is ongoing for about 50 percent of the abandoned pastures in the Amazon, but more needs to be done to encourage secondary forests and limit deforestation in the first place, Rodrigues said.

“There is still time to recover if we act now,” he said.

An Agriculture and Food Research Initiative grant from the U.S. Department of Agriculture supported the work detailed in the paper.

The University of Texas at Arlington is a comprehensive research institution of more than 33,300 students and 2,300 faculty members in the epicenter of North Texas. It is the second largest institution in The University of Texas System. Total research expenditures reached almost $78 million last year.

Traci Peterson | EurekAlert!
Further information:
http://www.uta.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>