Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New methods for better purification of wastewater

06.03.2012
Before wastewater reaches recipient waters, nutrients must be removed in order to avoid eutrophication and large algal blooms, which may result in serious damage to animal and plant life.

Robert Almstrand at the University of Gothenburg, Sweden, has shown in his thesis that better removal of nitrogen from wastewater can be achieved by providing the bacteria that purify the water with alternating high and low levels of nutrients.


An image of a nitrifying biofilm taken in a confocal microscope showing how different bacterial populations can be distinguished with the aid of species-specific labellinglabelling (in situ fluorescence hybridisation).
Photo: Robert Almstrand

The emission of wastewater to oceans, lakes and rivers contributes nutrients in the form of nitrogen and phosphorus to these recipients. This causes large algal blooms, and to prevent this the wastewater must be purified in wastewater treatment plants before being released.

The removal of nitrogen is a biological process in which different groups of bacteria are used to convert the nitrogen compounds to nitrogen gas in a number of steps. The nitrogen gas is then emitted to the atmosphere. The first, and rate-limiting step is nitrification. Nitrification is carried out by bacteria that oxidize ammonia via nitrite to nitrate ions.

Robert Almstrand at the Department of Chemistry and Molecular Biology shows in his thesis that the ability of the bacteria to carry out nitrification is improved if the bacteria receive alternating high and low levels of substrate (in the form of dissolved ammonium), rather than a constant low level. This will enable the wastewater treatment plant to cope better with variations in the concentration of nitrogen in the wastewater.

“Since the composition of the wastewater varies continuously, it was important to carry out the studies in a set-up that was as similar as possible to real wastewater treatment plants. For this reason we constructed a pilot plant at Ryaverket in Gothenburg”, says Robert Almstrand.

The bacteria grew in what are known as “biofilms”, which are dense collections of microorganisms on surfaces. Robert Almstrand used microscopy and digital image analysis to study how the bacterial colonies in the biofilms changed when exposed to different levels of nutrients.

“Different species of bacteria are promoted or inhibited to different extents by changes in their habitat”, he says. “These properties are reflected in their positions in the biofilm, and so we developed new methods to analyse these in detail. The new methods are very flexible and can be used to analyse pretty much any type of biofilms.”

Furthermore, Robert discovered that groups of bacteria that are normally considered to be the same species (Nitrosomonas oligotropha) were affected differently by the changes. It is, thus, important to understand the diversity within species of nitrifying bacteria, in order to improve the removal of nitrogen.

The thesis was successfully defended on 3 February 2012.

Author: robert.karlsson@gu.se
Telephone: +46 31 786 9871
For more information, please contact:
Robert Almstrand, Department of Chemistry and Molecular Biology, University of Gothenburg
Telephone: +46 31 786 2569
Mobile: +46 73 525 2187
E-mail: robert.almstrand@cmb.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://hdl.handle.net/2077/28022

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>