Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Mercyhurst research delivers near real-time water quality results

18.06.2012
Ongoing research by Mercyhurst University biologists intended to expand and expedite testing for potential pathogens in beach water at Presque Isle State Park has resulted in a new method that delivers near real-time water quality results.

Mercyhurst biologist Dr. Steven Mauro, who has been instrumental in local beach water research the past five years, said the system is being piloted at Presque Isle this summer and represents a collaboration of Mercyhurst, Penn State Behrend, the Regional Science Consortium and Pennsylvania Department of Conservation and Natural Resources.

Testing for E. coli bacteria is the standard for assessing recreational water quality. However, the conventional method of microbial plating to enumerate colonies of fecal indicator bacteria typically takes 24 hours or more to achieve a reliable reading.

The procedure uses a combination of computer predictions and quantitative PCR (qPCR) to isolate and identify bacterial DNA and gets the job done in two hours, limiting the amount of time during which swimmers are exposed to water that is potentially hazardous.

Not only might this emerging technology be of benefit to evaluating Erie’s beach water but, if proven to deliver consistently accurate results, could well be used by recreational water managers across the country, Mauro said.

Here’s how it works. Penn State Behrend statistician Dr. Michael Rutter developed a computer program that measures real-time conditions, including wind direction and speed, water temperature and wave height among other factors and predicts when conditions are ripe for E. coli contamination. Mauro monitors the program’s assessments and, if contamination is suspected, takes samples from local beach waters and processes them back at his Mercyhurst lab using state-of-the-art DNA technology. If the qPCR confirms E. coli contamination, Mauro reports his findings to Presque Isle State Park officials who can then make informed decisions on posting advisories.

“I can go to the peninsula first thing in the morning and have results by 10 or 11 a.m. the same day,” Mauro said.

In any beach-going season, he added, the collective qPCR results are expected to be 90 percent accurate. However, as this particular pilot project begins, Mauro said both the conventional and new methodology will be used to ensure the most accurate determinations of beach water safety. Testing will be completed by Mauro with support from trained Mercyhurst science students and interns from the Regional Science Consortium.

Meanwhile, Mauro and his students recently published their research on the new qPCR methodology in the Journal of Environmental Management. Co-authors included recent Mercyhurst graduates Surafel Mulugeta, Ryan Hindman, Adam M. Olszewski, Kaitlyn Hoover, Kendall Greene and Matthew Lieberman.

In recent years, Mauro’s beach water research has been funded by the National Science Foundation, the Environmental Protection Agency, Coastal Zone Management and the state Department of Environmental Protection with support from Pennsylvania Sea Grant and the Erie County Department of Health.

Debbie Morton | EurekAlert!
Further information:
http://www.mercyhurst.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>