Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the stability of organic waste

29.03.2010
A new tool developed to measure stability in organic wastes

The number of waste treatment facilities using biological processes to biodegrade waste has been increasing over the years. These installations receive municipal and industrial organic wastes with the common main goal of reducing their biodegradable organic matter content.

Composting, anaerobic digestion, and mechanical-biological treatment plants contribute to organic matter recycling and energy recovery, and avoid landfilling.

The general goal of those facilities is to stabilize the organic wastes. Stability is defined as the extent to which readily biodegradable organic matter has decomposed. Microorganisms perform the work of decomposition, but what determines when they are finished? A consensus has not yet been reached concerning the most suitable measurement of biodegradable organic matter, or stability, in a solid organic waste. A method for the measure of stability will allow for the proper analysis and design of waste treatment facilities and it is required to evaluate their efficiency.

The composting research group at Autonomous University of Barcelona led by Dr. Antoni Sánchez has investigated different methodologies to measure stability focusing on biological indicators, in a study funded by the Spanish Science and Education Ministry and the Catalonia Waste Agency. Authors have presented an improved methodology in the March-April 2010 issue of the Journal of Environmental Quality, which offers a reliable measurement of the biodegradable organic matter content in organic solid materials, useful for researchers and industrial operators. The journal is published by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

This study analyzed samples of food and garden wastes, mixed municipal solid wastes and sludge from wastewater treatment plants. The proposed methodology measures the respiration activity of microorganisms in the waste samples and establishes different respiration indices based on how fast those microorganisms consume oxygen and how much oxygen they have consumed.

The authors have established that respiration indices can be used as a measure of the biodegradable organic matter content and stability of organic materials and have defined the most suitable form of expression for those indices. Highly biodegradable wastes will have higher respiration rates, and wastes of low biodegradability will have lower respiration rates.

Research is ongoing at the Autonomous University of Barcelona to apply the developed methodology as a diagnostic tool in waste treatment facilities as well as to investigate the effect of stability on greenhouse gas emissions and the overall environmental impact of waste management systems. The authors highlight the need for an agreement of an international standard to be used by researchers and operators in the waste management field.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/full/39/2/706.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.sciencesocieties.org

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>