Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the stability of organic waste

29.03.2010
A new tool developed to measure stability in organic wastes

The number of waste treatment facilities using biological processes to biodegrade waste has been increasing over the years. These installations receive municipal and industrial organic wastes with the common main goal of reducing their biodegradable organic matter content.

Composting, anaerobic digestion, and mechanical-biological treatment plants contribute to organic matter recycling and energy recovery, and avoid landfilling.

The general goal of those facilities is to stabilize the organic wastes. Stability is defined as the extent to which readily biodegradable organic matter has decomposed. Microorganisms perform the work of decomposition, but what determines when they are finished? A consensus has not yet been reached concerning the most suitable measurement of biodegradable organic matter, or stability, in a solid organic waste. A method for the measure of stability will allow for the proper analysis and design of waste treatment facilities and it is required to evaluate their efficiency.

The composting research group at Autonomous University of Barcelona led by Dr. Antoni Sánchez has investigated different methodologies to measure stability focusing on biological indicators, in a study funded by the Spanish Science and Education Ministry and the Catalonia Waste Agency. Authors have presented an improved methodology in the March-April 2010 issue of the Journal of Environmental Quality, which offers a reliable measurement of the biodegradable organic matter content in organic solid materials, useful for researchers and industrial operators. The journal is published by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

This study analyzed samples of food and garden wastes, mixed municipal solid wastes and sludge from wastewater treatment plants. The proposed methodology measures the respiration activity of microorganisms in the waste samples and establishes different respiration indices based on how fast those microorganisms consume oxygen and how much oxygen they have consumed.

The authors have established that respiration indices can be used as a measure of the biodegradable organic matter content and stability of organic materials and have defined the most suitable form of expression for those indices. Highly biodegradable wastes will have higher respiration rates, and wastes of low biodegradability will have lower respiration rates.

Research is ongoing at the Autonomous University of Barcelona to apply the developed methodology as a diagnostic tool in waste treatment facilities as well as to investigate the effect of stability on greenhouse gas emissions and the overall environmental impact of waste management systems. The authors highlight the need for an agreement of an international standard to be used by researchers and operators in the waste management field.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/full/39/2/706.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.sciencesocieties.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>