Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MBARI sends underwater robot to study Deepwater Horizon spill

31.05.2010
MBARI's Division of Marine Operations, under an agreement with the National Oceanic and Atmospheric Administration (NOAA), sent a high-tech robotic submersible to the oily waters of the Gulf of Mexico. The goal is to collect information about the oil plume from the Deepwater Horizon drilling rig accident for NOAA.

Although satellites and aircraft can help show the extent of the spill at the surface, MBARI's autonomous underwater vehicle (AUV) will help researchers understand the nature and extent of any plumes of oil that may be hidden beneath the surface of the ocean.

The MBARI AUV is being deployed from the NOAA Ship Gordon Gunter in Pascagoula, Mississippi. The Gordon Gunter departed from shore on Thursday, May 27th. The AUV was launched into the waters of the Gulf for the first time this morning (May 28, 2010).

Autonomous underwater vehicles are robotic, untethered submersibles that are programmed at the surface, then navigate through the water on their own, collecting data as they go. The MBARI AUV can measure physical characteristics of the water, such as temperature, salinity, and dissolved oxygen, detect chlorophyll from microscopic marine algae, and measure concentrations of small particles (or oil droplets) in the water.

This AUV is unique in that it carries "gulper" samplers that can collect up to ten 1.8-liter water samples while traveling through the water (or through the plume in this case). The AUV also uses cutting-edge artificial intelligence software to decide where to go and when to collect its water samples. Engineers can program the on-board computers to help the AUV find a plume and then map its boundaries, as well as take water samples both within and outside the plume.

After the AUV is recovered, its water samples will be analyzed for a variety of chemicals associated with the oil and dispersants. These samples may also be subjected to DNA analysis to determine what types of algae, bacteria, or other microorganisms are present.

This MBARI AUV can dive to 1,500 meters (5,000 feet) below the surface-deep enough to collect water samples near the seafloor in the vicinity of the oil spill. The vehicle typically follows a "roller-coaster" path through the water, which allows its instruments to monitor a cross-section of the ocean.

MBARI engineers and scientists have been developing this AUV for almost a decade, and added its water-collection capability in 2007. One of the team's goals has been to replace expensive shipboard measurements with information collected automatically by the AUV. The vehicle has been used to study red tides and other algal blooms and to understand and perform long-term water quality monitoring.

The MBARI team is excited by the prospect that their vehicle may be useful in understanding the Gulf oil spill. Information about where oil is spreading beneath the ocean surface will help biologists and others understand the effects of this catastrophic event.

"MBARI's AUV and gulper system provides a surveillance and sample collection capability that is complementary to other tools being deployed to understand the fate of the subsurface plume of oil and dispersant." said MBARI President and Chief Executive Officer Chris Scholin. "Coordinating this response in partnership with government and academic institutions is not only important for providing much-needed fundamental information on the spill and its impacts, but also serves as a valuable learning experience for understanding how to respond to such incidents in the future."

Kim Fulton-Bennett | MBARI News Release
Further information:
http://www.mbari.org

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>