Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MBARI research shows where trash accumulates in the deep sea

06.06.2013
Surprisingly large amounts of discarded trash end up in the ocean. Plastic bags, aluminum cans, and fishing debris not only clutter our beaches, but accumulate in open-ocean areas such as the "Great Pacific Garbage Patch." Now, a paper by researchers at the Monterey Bay Aquarium Research Institute (MBARI) shows that trash is also accumulating in the deep sea, particularly in Monterey Canyon.
Kyra Schlining, lead author on this study, said, "We were inspired by a fisheries study off Southern California that looked at seafloor trash down to 365 meters. We were able to continue this search in deeper water—down to 4,000 meters. Our study also covered a longer time period, and included more in situ observations of deep-sea debris than any previous study I'm aware of."

To complete this extensive study, Schlining and her coauthors combed through 18,000 hours of underwater video collected by MBARI's remotely operated vehicles (ROVs). Over the past 22 years, technicians in MBARI's video lab recorded virtually every object and animal that appeared in these videos. These annotations are compiled in MBARI's Video Annotation and Reference System (VARS).

For this study, research technicians searched the VARS database to find every video clip that showed debris on the seafloor. They then compiled data on all the different types of debris they saw, as well as when and where this debris was observed.

A discarded tire sits on a ledge 868 meters (2,850 feet) below the ocean surface in Monterey Canyon. Image: ©2009 MBARI

In total, the researchers counted over 1,500 observations of deep-sea debris, at dive sites from Vancouver Island to the Gulf of California, and as far west as the Hawaiian Islands. In the recent paper, the researchers focused on seafloor debris in and around Monterey Bay—an area in which MBARI conducts over 200 research dives a year. In this region alone, the researchers noted over 1,150 pieces of debris on the seafloor.

The largest proportion of the debris—about one third of the total—consisted of objects made of plastic. Of these objects, more than half were plastic bags. Plastic bags are potentially dangerous to marine life because they can smother attached organisms or choke animals that consume them.

Metal objects were the second most common type of debris seen in this study. About two thirds of these objects were aluminum, steel, or tin cans. Other common debris included rope, fishing equipment, glass bottles, paper, and cloth items.

The researchers found that trash was not randomly distributed on the seafloor. Instead, it collected on steep, rocky slopes, such as the edges of Monterey Canyon, as well as in a few spots in the canyon axis. The researchers speculate that debris accumulates where ocean currents flow past rocky outcrops or other obstacles.

The researchers also discovered that debris was more common in the deeper parts of the canyon, below 2,000 meters (6,500 feet). Schlining commented, "I was surprised that we saw so much trash in deeper water. We don't usually think of our daily activities as affecting life two miles deep in the ocean." Schlining added, "I'm sure that there's a lot more debris in the canyon that we're not seeing. A lot of it gets buried by underwater landslides and sediment movement. Some of it may also be carried into deeper water, farther down the canyon."
In the same areas where they saw trash on the seafloor, the researchers also saw kelp, wood, and natural debris that originated on land. This led them to conclude that much of the trash in Monterey Canyon comes from land-based sources, rather than from boats and ships.

Although the MBARI study also showed a smaller proportion of lost fishing gear than did some previous studies, fishing gear accounted for the most obvious negative impacts on marine life. The researchers observed several cases of animals trapped in old fishing gear.

Other effects on marine life were more subtle. For example, debris in muddy-bottom areas was often used as shelter by seafloor animals, or as a hard surface on which animals anchored themselves. Although such associations seem to benefit the individual animals involved, they also reflect the fact that marine debris is creating changes in the existing natural biological communities.

To make matters worse, the impacts of deep-sea trash may last for years. Near-freezing water, lack of sunlight, and low oxygen concentrations discourage the growth of bacteria and other organisms that can break down debris. Under these conditions, a plastic bag or soda can might persist for decades.

MBARI researchers hope to do additional research to understand the long-term biological impacts of trash in the deep sea. Working with the Monterey Bay National Marine Sanctuary, they are currently finishing up a detailed study of the effects of a particularly large piece of marine debris—a shipping container that fell off a ship in 2004.

During research expeditions, researchers occasionally retrieve trash from the deep sea. However, removing such debris on a large scale is prohibitively expensive, and can sometimes do more damage than simply leaving it in place.

Schlining noted, "The most frustrating thing for me is that most of the material we saw—glass, metal, paper, plastic—could be recycled." She and her coauthors hope that their findings will inspire coastal residents and ocean users to recycle their trash instead of allowing it to end up in the ocean. In the conclusion of their article, they wrote, "Ultimately, preventing the introduction of litter into the marine environment through increased public awareness remains the most efficient and cost-effective solution to this dilemma."

For additional information, video, or images relating to this news release, please contact:

Kim Fulton-Bennett
831-775-1835, kfb@mbari.org

Kim Fulton-Bennett | EurekAlert!
Further information:
http://www.mbari.org
http://www.mbari.org/news/news_releases/2013/deep-debris/deep-debris-release.html

Further reports about: Canyon MBARI Monterey VARs Vancouver Island deep sea fishing gear oxygen concentration plastic

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>