Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine Viruses May Contribute to Ocean Energy

28.08.2009
Marine viruses that have borrowed a key set of bacterial photosynthetic genes may be contributing more to the oceans’ energy production than previously thought, according to a new study led by researchers at the Technion-Israel Institute of Technology.

Technion professor Oded Béjà and colleagues suggest that the viruses, or marine phages, may use the genes to gain a competitive advantage over the bacteria they infect and other viruses. But the findings, along with earlier reports of phages with photosynthetic genes, could “change our calculations of how energy is generated in the oceans,” said Béjà.

“About 40 percent of photosynthesis on Earth is done in the oceans, and 50 percent of that is done by cyanobacteria,” he said. “Now we have to ask how much of this is done with viruses.”

The combination of viral and bacterial genes may also inspire new designs for scientists working to build better batteries and other photoelectric energy sources in the laboratory, Béjà noted.

The transfer of genes from bacteria to viruses is a common mode of evolution among microbes, “like a baton being passed between runners,” said Dr. Paul Falkowski, a professor of marine, earth and planetary sciences at Rutgers University. Future analyses of the massive sets of genetic data gleaned from marine environments will certainly turn up other genes—beyond those associated with photosynthesis—that have made the leap from microbe to virus, he said.

The study by the Technion researchers and colleagues from California State University at San Diego, CNRS and UPMC-Université Paris, the U.S. National Institutes of Health, and Tel Aviv University is part of the 26 August advance online publications of the journal Nature.

The genes were found in marine viruses or phages that infect Prochlorococcus and Synechococcus cyanobacteria, the tiny, blue-green and single-celled ocean dwellers that are among the most numerous photosynthetic cells in the seas.

The viruses may have incorporated the genes as a way to gain more energy as they infect and reproduce, although the research team hasn’t confirmed whether the genes really do give the viruses an energetic edge.

The bacteria genes co-opted by the marine viruses are part of a group, or “cassette” of genes called photosystem I. Photosystem I and another gene cassette called photosystem II genes are essential to the first steps of photosynthesis, absorbing energy from light and transforming into a form that can be used to fuel further reactions in the process.

It was a laboratory bet between Béjà and Ph.D. students Itai Sharon and Ariella Alperovitch that led to the discovery of the photosystem I cassette in viruses. Although a 2003 study had found photosystem II genes in marine viruses, Béjà thought the photosystem I cassette would be a less likely addition to the viral genome.

The photosystem II complex is unstable, bearing the brunt of any light-caused damage, and bacteria are constantly making fresh proteins to replace the damaged ones. But the photosystem I cassette doesn’t receive as much damage, said Béjà, “so we might have no reason to look for them in viruses because why would viruses carry photosynthesis genes if they don’t need to replace them as often?”

After scouring genome databases from a selection of marine bacteria and viruses, however, the students won the bet and found the bacterial photosystem I genes integrated in the viral genome. Béjà said the researchers aren’t exactly certain why the photosystem I genes are valuable to the viruses, but one clue may come from the crystal structure modeling of the photosystem I protein complex from the viruses.

The complex’s structure may help the viral complex expand its sources of energy beyond those available to the bacterial complex. Such an energy boost could be vital to a virus’s fitness, Béjà suggested.

“If during infection, a phage can gain more energy, instead of producing 40 new phages, maybe it can produce 60 or 80 phages,” he said. “It might be a small but significant advantage over phages that haven’t done that.”

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country’s winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni. Based in New York City, the American Technion Society (ATS) is the leading American organization supporting higher education in Israel, with offices around the country.

Kevin Hattori | Newswise Science News
Further information:
http://www.ats.org

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>