Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine Protected Areas are keeping turtles safe

19.03.2012
Marine Protected Areas (MPAs) are providing sea turtles with an ideal habitat for foraging and may be keeping them safe from the threats of fishing.

A study by an international team of scientists led by the University of Exeter, published today (Thursday 15 March), shows that 35 per cent of the world's green turtles are found within MPAs. This is much higher that would be expected as only a small proportion of shallow oceans are designated as MPAs.

MPAs are areas of ocean in which marine activities such as fishing are restricted. Regulated by governments and NGOs, in the tropics they are often rich in seagrass and algae, providing food for the turtles, whose foraging may also help to maintain these habitats. There are different categories of MPAs, with the most strictly-protected being managed mainly for science.

The research team used data on the movements of 145 green turtles from 28 nesting sites, captured through extensive satellite tracking work by a collaborative team from ten countries. Their data shows that green turtles can travel thousands of miles from their breeding sites to their feeding ding grounds. 35 per cent of these were found to be foraging in MPAs. 21 per cent were found in MPAs that are most strictly protected and older MPAs were more likely to contain turtles.

Professor Brendan Godley of the University of Exeter's Centre for Ecology and Conservation said: "Our global overview revealed that sea turtles appear in Marine Protected Areas far more than would be expected by chance. There has been debate over the value of MPAs, but this research provides compelling evidence that they may be effective in providing safe foraging habitats for large marine creatures, such as green turtles.

"The satellite tracking work that the University of Exeter has played such a lead role in developing allows us to assess the value of MPAs in a way that would never have previously been possible."

This study is published in the journal Global Ecology and Biogeography. It was facilitated by SEATURTLE.org and the group is funded by NERC and Defra's Darwin Initiative. .

Fisheries Minister Richard Benyon welcomed the results of the research: "This study unlocks some of the secrets surrounding the life cycle of marine turtles, whose movements have long been a mystery. The results will mean we will better manage the oceans and protect turtle habitats which are key to helping them survive.

"This also shows the vital collaborative role Defra's Darwin Initiative plays in the cutting edge of conservation worldwide."

Research collaborators include: Udayana University (Indonesia), Department of Environment, (Cayman Islands), Hacettepe University (Turkey), ISPA (Portugal), Kelonia (La Reunion), Office National de la Chasse et de la Faune Sauvage (Guadeloupe),WWF (Indonesia), University of Pisa (Italy), Pendoley Environmental Pty Ltd (Australia),Marine Conservation Society (UK) and ARCHELON, Protection (Greece)

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>