Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine Lab Hunts Subtle Clues to Environmental Threats to Blue Crabs

28.01.2010
The Atlantic blue crab, Callinectes sapidus, long prized as a savory meal at a summer party or seafood restaurant, is a multi-million dollar source of income for those who harvest, process and market the crustacean along the U.S. Atlantic and Gulf coasts.

Unfortunately, the blue crab population has been declining in recent years under the assault of viruses, bacteria and man-made contaminants. The signs of the attack often are subtle, so researchers from the National Institute of Standards and Technology (NIST) and the College of Charleston (CofC) are at work trying to identify the clues that will finger specific, yet elusive, culprits.

Pathogens and pollutants impair the blue crab’s metabolic processes, the chemical reactions that produce energy for cells. These stresses should cause tell-tale changes in the levels of metabolites, small chemical compounds created during metabolism. Working at the Hollings Marine Laboratory (HML) in Charleston, S.C., the NIST/CofC research team is using a technology similar to magnetic resonance imaging (MRI) to identify and quantify the metabolites that increase in quantity under common environmental stresses to blue crabs—metabolites that could be used as biomarkers to identify the specific sources.

In a recent paper in Metabolomics,* the HML research team describes how it used nuclear magnetic resonance (NMR) spectroscopy to study challenges to one specific metabolic process in blue crabs: oxygen uptake. First, the researchers simulated an environmentally acquired bacterial infection by injecting crabs with the bacterium Vibrio campbellii. This pathogen impairs the crab’s ability to incorporate oxygen during metabolism. Using NMR spectroscopy to observe the impact on metabolite levels, the researchers found that the yield of glucose, considered a reliable indicator of mild oxygen starvation in crustaceans, was raised.

In a second experiment, the HML team mimicked a chemical pollutant challenge by injecting blue crabs with a chemical** known to inhibit oxidative phosphorylation, a metabolic process that manufactures energy. This time, the metabolite showing up in response to stress was lactate, the same compound seen when our muscles need energy and must take in oxygen to get more produced. A rise in the amount of lactate proved that the crabs were increasing their oxygen uptake in response to the chemical exposure.

“Having the glucose and lactate biomarkers—and the NMR spectroscopy technique to accurately detect them—is important because the blue crab’s responses to mild, non-lethal metabolic stresses are often so subtle that they can be missed by traditional analyses,” says Dan Bearden, corresponding author on the HML paper.

The research was supported in part by the National Science Foundation.

The HML is a partnership of governmental and academic agencies including NIST, NOAA’s National Ocean Service, the South Carolina Department of Natural Resources, the College of Charleston and the Medical University of South Carolina.

* T.B. Schock, D.A. Stancyk, L. Thibodeaux, K.G. Burnett, L.E. Burnett, A.F.B. Boroujerdi and D.W. Bearden. Metabolomic analysis of Atlantic blue crab, Callinectes sapidus, hemolymph following oxidative stress. Metabolomics, Published online Jan. 20, 2010, DOI 10.1007/s11306-009-0194-y.

** 2,4-dinitrophenol (DNP)

Michael E. Newman, michael.newman@nist.gov, (301) 975-3025

Michael E. Newman | Newswise Science News
Further information:
http://www.nist.gov

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>