Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine Lab Hunts Subtle Clues to Environmental Threats to Blue Crabs

28.01.2010
The Atlantic blue crab, Callinectes sapidus, long prized as a savory meal at a summer party or seafood restaurant, is a multi-million dollar source of income for those who harvest, process and market the crustacean along the U.S. Atlantic and Gulf coasts.

Unfortunately, the blue crab population has been declining in recent years under the assault of viruses, bacteria and man-made contaminants. The signs of the attack often are subtle, so researchers from the National Institute of Standards and Technology (NIST) and the College of Charleston (CofC) are at work trying to identify the clues that will finger specific, yet elusive, culprits.

Pathogens and pollutants impair the blue crab’s metabolic processes, the chemical reactions that produce energy for cells. These stresses should cause tell-tale changes in the levels of metabolites, small chemical compounds created during metabolism. Working at the Hollings Marine Laboratory (HML) in Charleston, S.C., the NIST/CofC research team is using a technology similar to magnetic resonance imaging (MRI) to identify and quantify the metabolites that increase in quantity under common environmental stresses to blue crabs—metabolites that could be used as biomarkers to identify the specific sources.

In a recent paper in Metabolomics,* the HML research team describes how it used nuclear magnetic resonance (NMR) spectroscopy to study challenges to one specific metabolic process in blue crabs: oxygen uptake. First, the researchers simulated an environmentally acquired bacterial infection by injecting crabs with the bacterium Vibrio campbellii. This pathogen impairs the crab’s ability to incorporate oxygen during metabolism. Using NMR spectroscopy to observe the impact on metabolite levels, the researchers found that the yield of glucose, considered a reliable indicator of mild oxygen starvation in crustaceans, was raised.

In a second experiment, the HML team mimicked a chemical pollutant challenge by injecting blue crabs with a chemical** known to inhibit oxidative phosphorylation, a metabolic process that manufactures energy. This time, the metabolite showing up in response to stress was lactate, the same compound seen when our muscles need energy and must take in oxygen to get more produced. A rise in the amount of lactate proved that the crabs were increasing their oxygen uptake in response to the chemical exposure.

“Having the glucose and lactate biomarkers—and the NMR spectroscopy technique to accurately detect them—is important because the blue crab’s responses to mild, non-lethal metabolic stresses are often so subtle that they can be missed by traditional analyses,” says Dan Bearden, corresponding author on the HML paper.

The research was supported in part by the National Science Foundation.

The HML is a partnership of governmental and academic agencies including NIST, NOAA’s National Ocean Service, the South Carolina Department of Natural Resources, the College of Charleston and the Medical University of South Carolina.

* T.B. Schock, D.A. Stancyk, L. Thibodeaux, K.G. Burnett, L.E. Burnett, A.F.B. Boroujerdi and D.W. Bearden. Metabolomic analysis of Atlantic blue crab, Callinectes sapidus, hemolymph following oxidative stress. Metabolomics, Published online Jan. 20, 2010, DOI 10.1007/s11306-009-0194-y.

** 2,4-dinitrophenol (DNP)

Michael E. Newman, michael.newman@nist.gov, (301) 975-3025

Michael E. Newman | Newswise Science News
Further information:
http://www.nist.gov

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>