Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mangroves reduce Tsunami impacts

01.02.2012
An analysis of earthquake and tsunami risks presented this month in the Pertanika Journal of Science & Technology suggests that mangrove forests have a protective role in the event of a tsunami.
The researchers, from the newly formed Disaster Research Nexus (DRN) at Universiti Sains Malaysia, hope that their work will encourage the development of better prepared communities.

The 2004 Banda Aceh earthquake and ensuing Andaman mega tsunami that caused widespread devastation and killed over a quarter of a million people worldwide was a wake-up call to many. Immediately afterwards, work was initiated to help develop human capacity and resources, and to mitigate future events. Koh Hock Lye and colleagues at the DRN developed a tsunami simulation model to investigate the role of coastal vegetation in reducing the impact of such events.
Using the model, the team analysed the earthquake risk for the Upper Padas Dam in Sabah, and found that the presence of mangroves appeared to reduce the impact of tsunamis. The research also showed that tsunamis can affect the salinity of water and soil and induce vegetative changes in affected regions.

Mangrove forests are one of the world’s most threatened ecosystems, with a fifth of the world’s mangroves having been destroyed over the last few decades. This research highlights the need to conserve them in areas where the risk of earthquakes and tsunamis are high.

The team hope that their work will improve research collaboration and allow better preparedness for seismic events worldwide.
About the Pertanika Journal of Science and Technology

Pertanika Journal of Science & Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.

CONTACTS
For more information on the research, contact

Koh Hock Lye
Disaster Research Nexus, School of Civil Engineering
Engineering Campus, Universiti Sains Malaysia
14300 Nibong Tebal, Penang, Malaysia
E-mail: hlkoh@usm.my

TELEPHONE: +604-653 4770.
MOBILE: +6012 456 7518.

For more information about the journal, contact

The Executive Editor
Pertanika Journals
Office of the Deputy Vice Chancellor (R&I)
Tower 2, UPM-MDTC Technology Centre
Universiti Putra Malaysia
43400 Serdang, Selangor
Malaysia.

Phone: + (603) 8947 1622 | + (6) 016 217 4050
Email: ndeeps@admin.upm.edu.my

Mohamad Abdullah | Research asia research news
Further information:
http://www.upm.edu.my
http://www.usm.my
http://www.researchsea.com

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>