Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Managing Future Forests for Water

29.09.2011
Forest Service Southern Research Station (SRS) scientists recently used long-term data from the Coweeta Hydrological Laboratory (Coweeta) in Western North Carolina to examine the feasibility of managing forests for water supply under the changing weather conditions forecast for the future.

Published in the September issue of the journal Ecological Applications, the analysis examines the interactions among changing weather conditions, forest management, and streamflow using long-term data from paired watershed studies at Coweeta, a 5,600-acre research facility and Forest Service Experimental Forest.

“Long-term data from experimental forests are truly the foundation of Forest Service research,” says SRS Research Ecologist and lead author Chelcy Ford. “For this study we took one of the longest continuous records of climate and hydrology and coupled it with data from the long-term forest management experiments on the paired watersheds to look at both precipitation patterns and the feasibility of using forest management to sustain water supply.”

The data analysis revealed that precipitation patterns are changing and becoming more extreme, in line with what climate models predict for the area. “We found significant increases in temperature and in the frequency of extreme wet and dry years since the 1980s,” says Ford. “These findings tied with those on management and streamflow have implications for managers in any area where changes in precipitation patterns could occur.”

Management approaches used in Coweeta watershed studies include conventional thinning strategies as well as more intensive approaches such as converting hardwood stands to pines. Partly because pines keep their needles year-round, conversion from hardwoods to pines decreases streamflow. For this study, Coweeta researchers asked whether vegetation on managed watersheds responded differently to extreme dry and wet years than vegetation on unmanaged watersheds.

“The answer in almost all cases was yes,” says Ford. “But from a streamflow perspective, the extreme case of converting hardwood forest to pine produced the largest effect on available surface water. Though it might be a good option for mitigating climate change under future scenarios of increased precipitation, species conversion from hardwood forest to pine would be a poor choice under drier scenarios where it could worsen water shortages by reducing the amount of available water in streams.”

Land managers and policy makers are looking to forests for options to offset the effects of climate change, and to forest management as a way to create ecosystems more resilient to the weather effects of a changing climate, but Ford and her fellow authors advise managers to look closely at the risks and vulnerabilities involved in managing for climate change, especially in relation to water supply.

“Managers need to carefully weigh the risks of adopting one strategy over another,” says Ford. “They also need to realize that any strategies they consider will have to address these risks at the regional or even more fine-scaled level, taking into account possible changes to local precipitation patterns.”

For more information: Chelcy Ford at (828) 524-2128, x 118 or crford@fs.fed.us

Full text of the article: http://www.srs.fs.usda.gov/pubs/38726

Chelcy Ford | EurekAlert!
Further information:
http://www.srs.fs.usda.gov/news/486
http://www.fs.fed.us

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>