Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Managing forests requires a bird’s-eye view

03.06.2011
Managers of northern Michigan forests may not see the birds for the trees – or at least are in danger of losing sight of songbird neighborhoods when looking out for timber harvests.

In a novel look at managing both the future’s timber harvest while being mindful of the impact on key songbirds in Michigan’s Upper Peninsula, Michigan State University researchers use a new forest simulation model for the first time to look at what timber-friendly hardwood regeneration can mean to bird habitat. And it’s a long-range look, given that the time lag between forest management decisions and impact are generations.

The results are reported in “Combined long-term effects of variable tree regeneration and timber management on forest songbirds and timber production” online in the journal Forest Ecology and Management.

“Foresters are farmers – but instead of sowing and harvesting in six months, they need to think 50 years in the future,” said James Millington, the paper’s lead author and former post-doctoral researcher at Michigan State University’s Center for Systems Integration and Sustainability (CSIS). “If you are worried about the state of the forest in 100 years time, you need to think about it now and you’ll need good models like we’re developing.”

Michigan’s Upper Peninsula is home not only to a thriving timber industry, but also is an important breeding ground to many songbird species of conservation concern. Birds, Millington explained, are particular about their neighborhoods – having specific preferences for how open the forest canopy is and how high and sturdy branches are. If a forest changes considerably as it is harvested and regrows, birds won’t be as successful at nesting and reproducing.

Paper coauthors are Michael Walters, associate professor of forestry; Megan Matonis, who recently earned a master’s degree in forestry while a CSIS member; Edward Laurent, a former CSIS doctoral student now science coordinator at the American Bird Conservancy; Kimberly Hall, climate change scientist at The Nature Conservancy; and Jianguo “Jack” Liu, Rachel Carson Chair in Sustainability and director of the center.

The group engaged in a complicated birds-eye view of the forest, seeking to understand how four key songbirds – the black-throated green warbler, eastern wood-pewee, least flycatcher and rose-breasted grosbeak – dealt with neighborhood upheaval. The study area stretches over some 3,000 square miles of public and private land from Crystal Falls to the west, east and south to Escanaba and north of Marquette. For two years, the team examined the harvest gaps left in forests when hardwoods are cut down.

Logging changes a forest’s composition – creating gaps in the canopy that can take years to fill. Matonis, Millington’s colleague, recently reported that the current popular way of encouraging regeneration of hardwoods, called gap harvesting, isn’t always successful. Sometimes it appears deer are chowing on the maple seedling trying to grow in the sunny gaps left by harvest.

The four songbird species the team picked all are fussy about their canopy. For example, the warbler likes its canopy dense with lots of branches about 50 feet high. The flycatcher, however, digs more open expanses.

“If all the birds like the same thing – understanding consequences of logging and differences in tree regeneration would be easier,” Millington said.

The analysis is ambitious and complicated. The team seeks to create models that show how a forest shapes up at different rates of regeneration, both in timber-centric and bird-centric points of view.

The bottom line: Regeneration in harvest gaps of species that become large canopy dominant trees such as sugar maple is crucial for forest managers to have choices. If trees aren’t growing back well, there’s no opportunity to even start watching out for the forest’s residents.

“Essentially for birds in these forests it’s the density of sugar maple regeneration that has the biggest effect on their future habitat,” Millington said. “These birds are picky about their overstory – and if regeneration is changing the forest now, in 100 years times your canopy is going to be very different.

“We know how to grow trees pretty well and we can get timber, but people who manage timber need to talk to people who manage for wildlife, and they all need information to make decisions.”

The research is funded by the U.S. Department of Agriculture, the Michigan Department of Natural Resources and MSU's AgBioResearch. Millington is now a Leverhulme Early Career Fellow at King's College in London, UK.

The center works in the innovative new field of coupled human and natural systems to find sustainable solutions that both benefit the environment and enable people to thrive.

Contact:
Sue Nichols
Assistant Director
Center for Systems Integration and Sustainability
517-432-0206
nichols@msu.edu

Sue Nichols | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: CSIS Conservancy Sustainability Upper bird species

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>