Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Managing forests requires a bird’s-eye view

Managers of northern Michigan forests may not see the birds for the trees – or at least are in danger of losing sight of songbird neighborhoods when looking out for timber harvests.

In a novel look at managing both the future’s timber harvest while being mindful of the impact on key songbirds in Michigan’s Upper Peninsula, Michigan State University researchers use a new forest simulation model for the first time to look at what timber-friendly hardwood regeneration can mean to bird habitat. And it’s a long-range look, given that the time lag between forest management decisions and impact are generations.

The results are reported in “Combined long-term effects of variable tree regeneration and timber management on forest songbirds and timber production” online in the journal Forest Ecology and Management.

“Foresters are farmers – but instead of sowing and harvesting in six months, they need to think 50 years in the future,” said James Millington, the paper’s lead author and former post-doctoral researcher at Michigan State University’s Center for Systems Integration and Sustainability (CSIS). “If you are worried about the state of the forest in 100 years time, you need to think about it now and you’ll need good models like we’re developing.”

Michigan’s Upper Peninsula is home not only to a thriving timber industry, but also is an important breeding ground to many songbird species of conservation concern. Birds, Millington explained, are particular about their neighborhoods – having specific preferences for how open the forest canopy is and how high and sturdy branches are. If a forest changes considerably as it is harvested and regrows, birds won’t be as successful at nesting and reproducing.

Paper coauthors are Michael Walters, associate professor of forestry; Megan Matonis, who recently earned a master’s degree in forestry while a CSIS member; Edward Laurent, a former CSIS doctoral student now science coordinator at the American Bird Conservancy; Kimberly Hall, climate change scientist at The Nature Conservancy; and Jianguo “Jack” Liu, Rachel Carson Chair in Sustainability and director of the center.

The group engaged in a complicated birds-eye view of the forest, seeking to understand how four key songbirds – the black-throated green warbler, eastern wood-pewee, least flycatcher and rose-breasted grosbeak – dealt with neighborhood upheaval. The study area stretches over some 3,000 square miles of public and private land from Crystal Falls to the west, east and south to Escanaba and north of Marquette. For two years, the team examined the harvest gaps left in forests when hardwoods are cut down.

Logging changes a forest’s composition – creating gaps in the canopy that can take years to fill. Matonis, Millington’s colleague, recently reported that the current popular way of encouraging regeneration of hardwoods, called gap harvesting, isn’t always successful. Sometimes it appears deer are chowing on the maple seedling trying to grow in the sunny gaps left by harvest.

The four songbird species the team picked all are fussy about their canopy. For example, the warbler likes its canopy dense with lots of branches about 50 feet high. The flycatcher, however, digs more open expanses.

“If all the birds like the same thing – understanding consequences of logging and differences in tree regeneration would be easier,” Millington said.

The analysis is ambitious and complicated. The team seeks to create models that show how a forest shapes up at different rates of regeneration, both in timber-centric and bird-centric points of view.

The bottom line: Regeneration in harvest gaps of species that become large canopy dominant trees such as sugar maple is crucial for forest managers to have choices. If trees aren’t growing back well, there’s no opportunity to even start watching out for the forest’s residents.

“Essentially for birds in these forests it’s the density of sugar maple regeneration that has the biggest effect on their future habitat,” Millington said. “These birds are picky about their overstory – and if regeneration is changing the forest now, in 100 years times your canopy is going to be very different.

“We know how to grow trees pretty well and we can get timber, but people who manage timber need to talk to people who manage for wildlife, and they all need information to make decisions.”

The research is funded by the U.S. Department of Agriculture, the Michigan Department of Natural Resources and MSU's AgBioResearch. Millington is now a Leverhulme Early Career Fellow at King's College in London, UK.

The center works in the innovative new field of coupled human and natural systems to find sustainable solutions that both benefit the environment and enable people to thrive.

Sue Nichols
Assistant Director
Center for Systems Integration and Sustainability

Sue Nichols | EurekAlert!
Further information:

Further reports about: CSIS Conservancy Sustainability Upper bird species

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>