Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Managing forests requires a bird’s-eye view

03.06.2011
Managers of northern Michigan forests may not see the birds for the trees – or at least are in danger of losing sight of songbird neighborhoods when looking out for timber harvests.

In a novel look at managing both the future’s timber harvest while being mindful of the impact on key songbirds in Michigan’s Upper Peninsula, Michigan State University researchers use a new forest simulation model for the first time to look at what timber-friendly hardwood regeneration can mean to bird habitat. And it’s a long-range look, given that the time lag between forest management decisions and impact are generations.

The results are reported in “Combined long-term effects of variable tree regeneration and timber management on forest songbirds and timber production” online in the journal Forest Ecology and Management.

“Foresters are farmers – but instead of sowing and harvesting in six months, they need to think 50 years in the future,” said James Millington, the paper’s lead author and former post-doctoral researcher at Michigan State University’s Center for Systems Integration and Sustainability (CSIS). “If you are worried about the state of the forest in 100 years time, you need to think about it now and you’ll need good models like we’re developing.”

Michigan’s Upper Peninsula is home not only to a thriving timber industry, but also is an important breeding ground to many songbird species of conservation concern. Birds, Millington explained, are particular about their neighborhoods – having specific preferences for how open the forest canopy is and how high and sturdy branches are. If a forest changes considerably as it is harvested and regrows, birds won’t be as successful at nesting and reproducing.

Paper coauthors are Michael Walters, associate professor of forestry; Megan Matonis, who recently earned a master’s degree in forestry while a CSIS member; Edward Laurent, a former CSIS doctoral student now science coordinator at the American Bird Conservancy; Kimberly Hall, climate change scientist at The Nature Conservancy; and Jianguo “Jack” Liu, Rachel Carson Chair in Sustainability and director of the center.

The group engaged in a complicated birds-eye view of the forest, seeking to understand how four key songbirds – the black-throated green warbler, eastern wood-pewee, least flycatcher and rose-breasted grosbeak – dealt with neighborhood upheaval. The study area stretches over some 3,000 square miles of public and private land from Crystal Falls to the west, east and south to Escanaba and north of Marquette. For two years, the team examined the harvest gaps left in forests when hardwoods are cut down.

Logging changes a forest’s composition – creating gaps in the canopy that can take years to fill. Matonis, Millington’s colleague, recently reported that the current popular way of encouraging regeneration of hardwoods, called gap harvesting, isn’t always successful. Sometimes it appears deer are chowing on the maple seedling trying to grow in the sunny gaps left by harvest.

The four songbird species the team picked all are fussy about their canopy. For example, the warbler likes its canopy dense with lots of branches about 50 feet high. The flycatcher, however, digs more open expanses.

“If all the birds like the same thing – understanding consequences of logging and differences in tree regeneration would be easier,” Millington said.

The analysis is ambitious and complicated. The team seeks to create models that show how a forest shapes up at different rates of regeneration, both in timber-centric and bird-centric points of view.

The bottom line: Regeneration in harvest gaps of species that become large canopy dominant trees such as sugar maple is crucial for forest managers to have choices. If trees aren’t growing back well, there’s no opportunity to even start watching out for the forest’s residents.

“Essentially for birds in these forests it’s the density of sugar maple regeneration that has the biggest effect on their future habitat,” Millington said. “These birds are picky about their overstory – and if regeneration is changing the forest now, in 100 years times your canopy is going to be very different.

“We know how to grow trees pretty well and we can get timber, but people who manage timber need to talk to people who manage for wildlife, and they all need information to make decisions.”

The research is funded by the U.S. Department of Agriculture, the Michigan Department of Natural Resources and MSU's AgBioResearch. Millington is now a Leverhulme Early Career Fellow at King's College in London, UK.

The center works in the innovative new field of coupled human and natural systems to find sustainable solutions that both benefit the environment and enable people to thrive.

Contact:
Sue Nichols
Assistant Director
Center for Systems Integration and Sustainability
517-432-0206
nichols@msu.edu

Sue Nichols | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: CSIS Conservancy Sustainability Upper bird species

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>