Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Management of mountain meadows influences resilience to climate extremes

10.01.2018

The species-rich mountain meadows of the Alps are subject to continuous land use changes and increasingly frequent climatic extremes. Persistent periods of drought are seen as the greatest threat to grassland ecosystems. To find out how a change in management influences the drought reaction of mountain meadows, a research team from the Max Planck Institute for Biogeochemistry in Jena together with international cooperation partners carried out field experiments in the Tyrolean Stubai Valley.

The results of the study, currently published in the Journal of Ecology, show that land use controls the resistance and recovery capacity of mountain meadows through various interactions between plants and soil microorganisms.


Research area in the Alps

© Stefan Karlowsky

Mountain meadows provide many important ecosystem services, even beyond the borders of the mountain regions. These include forage production, biodiversity, erosion control, and the supply of drinking water. In addition, these ecosystems have a high cultural value and serve for recreation. Due to societal changes, the management of mountain meadows has changed too, especially since the last century.

This is particularly well studied in the Alpine region, where locally up to 70 percent of traditional grazing and mowing has been abandoned. Such changes in land use have a strong impact on the composition of the plant community, the soil and the micro-organisms contained therein.

Interaction of plants and soil microorganisms is important

Plants increase the activity of bacteria and fungi by passing on a part of their carbon from photosyn-thesis to them. This in turn leads to a greater release of plant nutrients in the soil and in addition, mycorrhiza fungi provide access to extra resources outside the roots.

Longer periods of drought as predicted for the Alps, however, greatly reduce carbon uptake and input into the soil. Above ground, a withering of leaves and stems becomes visible, subterranean losses in nutrient uptake by the roots occur. However, a good supply of nutrients is important to ensure a quick recovery of the plants after the end of the drought.

Moderate management leads to faster recovery

The interdisciplinary team of scientists from Germany, France, Italy, and Austria investigated the carbon dioxide uptake and distribution in a total of 24 test plots at an altitude of over 1,800 meters using stable isotope labelling. During and after the drought, the researchers were able to follow the path of the carbon through plant sugars in leaves and roots up to root respiration and including ab-sorption into various bacteria and fungi. In addition, they determined the strength of the plant's nitrogen uptake from the soil after drought.

The scientists were able to show that although the spare plant community of a fallow meadow reacts less strongly to drought stress; it recovers more slowly than the more productive plant community of a moderately cultivated hayfield. The higher resistance of the fallow land was accompanied by a greater spread of mycorrhiza fungi, which, with their hyphae network, improve plant access to water and nutrients in the soil. The hay meadow plants had a different strategy during the drought.

They retained as many resources as possible in the form of sugars in their roots, but at the same time lost a lot of leaf mass. After the drought, these resources were released and the plants recovered quickly. The process was accompanied by an increased carbon transfer to free-living soil bacteria and fungi which are able to release further nutrients from the organic soil substance. On the basis of an increased nitrogen uptake during the recovery phase, the scientists were able to show that hay meadow plants can effectively absorb newly released nutrients in the soil and use them for regrowth.

Meadow ecosystems' ability to resist and to recover behave the other way round

Stefan Karlowsky, first author of the study and doctoral student at the Max Planck Institute for Bio-geochemistry, explains: “A high level of resistance is followed by a slow recovery, while a lower re-sistance is accompanied by a rapid recovery.” Consequently, the effects of extreme droughts on mountain pastures can be specifically regulated and potentially mitigated through appropriate man-agement.

“To this end, we still have to find out how different periods of time and intensity as well as repeated droughts affect meadow ecosystems”, Stefan Karlowsky looks ahead. "We assume that the good recreational ability of the managed mountain meadows pays off during stronger or more fre-quent dry periods.” adds Prof. Gerd Gleixner. Through regular mowing, the plants are accustomed to storing more resources in the roots and to use them for rapid regrowth.

The research work was carried out as part of the EU project REGARDS (http://www.project-regards.org/).

Original publication:
Karlowsky S., Augusti A., Ingrisch J., Hasibeder R., Lange M., Lavorel S., Bahn M. and Gleixner G., Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions. Journal of Ecology, 2017; 00:1–14. https://doi.org/10.1111/1365-2745.12910

Contact:
Stefan Karlowsky
Phone: +49 (0)3641 57 6147, Email: skarlo@bgc-jena.mpg.de

apl. Prof. Dr. Gerd Gleixner
Phone +49 (0)3641 57 6172, Email: gerd.gleixner@bgc-jena.mpg.de

Weitere Informationen:

http://www.project-regards.org/ REGARDS Project
https://doi.org/10.1111/1365-2745.12910 Link to the publication
https://www.bgc-jena.mpg.de/www/index.php/Main/HomePage Link to MPI for Biogeochemistry

Susanne Héjja | Max-Planck-Institut für Biogeochemie

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>