Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To manage a fishery, you must know how the fish die

12.08.2009
Recreational anglers and commercial fishermen understand you need good fishery management to make sure there will be healthy populations of fish for generations to come.

And making good management decisions rests in large part on understanding the mortality of fish species – how many fish die each year as a result of natural causes and recreational and commercial fishing.

Now researchers at North Carolina State University have utilized a new research method that can give fishery managers a better idea of how fish are dying, so they can make informed decisions on how to ensure a healthy fish population.

Fisheries scientists from NC State have, for the first time, implemented a research strategy that uses both "conventional" tags and ultrasonic telemetry tags (transmitters) to estimate mortality rates. The approach was used in a study on mortality rates of "sub-adult" red drum, which are red drum that are close to adult in size but have not yet begun to reproduce. However, the research methods pioneered in this study could be applied to many other species, including popular fish such as striped bass. Red drum are popular among recreational anglers in many parts of the country, and are also important to commercial fishermen in North Carolina.

The conventional tags offer rewards to recreational and commercial fishermen who catch the tagged fish, creating an incentive for them to contact researchers. This approach lets researchers know how many of the tagged fish have been caught and how many of the fish were subsequently released or harvested, explains Dr. Jeff Buckel, an associate professor of biology at NC State and co-author of the study. This approach provides particularly good data on mortality resulting from commercial and recreational fishing, Buckel says.

The telemetry tags transmit uniquely coded sounds to receivers, allowing researchers to track fish movement in a given area. In this instance, the researchers were using both stationary receivers and mobile hydrophones to track tagged fish in the Neuse River estuary in eastern North Carolina, Buckel says. Telemetry tags provide excellent data on natural mortality, because the tags stop moving once the fish has died. These tags can also detect that a fish has been caught by commercial or recreational fishermen, because the tag will disappear from the study area without swimming past any of the receivers.

"The methodology we used in this study combined good natural mortality data from the telemetry tags with good recreational and commercial fishing mortality data from the conventional tags to give us a more precise estimate of overall mortality for sub-adult red drum," Buckel says. "This is important because, if you have a good understanding of mortality rates, you can make informed decisions about how to manage a fishery in order to ensure its long-term health." For example, the information generated by this study contributed to state and regional assessments of the red drum population.

"This is the first time this approach, using both kinds of tags, has been used in the field," Buckel says, "and it could have significant applications for other species, such as striped bass." One limitation is that the telemetry tags are only useful in relatively confined areas, such as lakes, estuaries or reservoirs – where researchers can place listening devices near exits to determine if a fish has left the waterbody on its own, rather than being caught by a fisherman.

The researchers, led by then-NC State Ph.D. student Nathan Bacheler, focused on sub-adult red drum because North Carolina only allows recreational and commercial fishermen to keep drum that are between 18 inches and 27 inches long. These fish are generally not old enough to reproduce. So researchers wanted to determine whether natural mortality and fishing mortality were limiting the long-term viability of the fishery. Good news fish fans: "Natural mortality was much lower than we previously assumed," Bacheler says, "and the fishing mortality was similar to previous estimates."

The research, "A combined telemetry – tag return approach to estimate fishing and natural mortality rates of an estuarine fish," was funded by North Carolina Sea Grant and is published in the August issue of the Canadian Journal of Fisheries and Aquatic Sciences. The study was co-authored by Bacheler, Buckel, NC State biology professors Dr. Joseph Hightower and Dr. Kenneth Pollock, and Lee Paramore of the North Carolina Division of Marine Fisheries.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>