Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSU’s WAVCIS Director Says Oil Remains Below Surface, Will Come Ashore in Pulses

09.09.2010
System provides valuable information during hurricane season, oil disaster

Gregory Stone, director of LSU’s WAVCIS Program and also of the Coastal Studies Institute in the university’s School of the Coast & Environment, disagrees with published estimates that more than 75 percent of the oil from the Deepwater Horizon incident has disappeared.

Stone recently participated in a three-hour flyover of the affected area in the Gulf, where he said that subsurface oil was easily visible from overhead.

“It’s most definitely there,” said Stone. “It’s just a matter of time before it makes itself known again.”

Readings from WAVCIS indicate that the direction of the ocean currents near the middle and bottom of the water column are aimed offshore; in other words, this submerged oil will be pushed out to sea, where it will then rise higher into the water column and be washed onto land, particularly during storms.

“It is going to come on shore not consistently, but rather in pulses because it is beneath the surface,” he said. “You may get one or two, maybe even five or 10 waves coming ashore with absolutely no oil … but eventually, it’s going to come ashore.” He also cautions that whatever oil doesn’t remain suspended in the water column may simply sit atop the seafloor, waiting to be mixed back into the currents.

“It will simply be stirred up during rough seas or changing currents and reintroduced into the water column,” he explained.

Another timely concern is hurricane season since September is generally one of the most active months of the year. “Storm surge, when combined with storm waves from a hurricane, could stir up this submerged oil and bring it – lots of it – onshore and into the wetlands,” Stone said. “Even a tropical storm could result in more oil on the shoreline. And that’s a reality we need to consider and be prepared for.”

Formally known as the Wave-Current-Surge Information System, WAVCIS is based off of a network of buoys, oil platforms sensors and ADCPs, or Acoustic Doppler Current Profilers, in the Gulf of Mexico. The ADCPs are exceptionally sensitive. Housed on the seafloor, they send acoustic signals up to the surface of the water, measuring the entire water column for everything from current direction to speed and temperature. It’s also integrated with the National Data Buoy Center, or NDBC, system, providing researchers worldwide with a comprehensive look at the Gulf environment, which is an invaluable research tool during the inevitable hurricane season, and also during disasters such as the Deepwater Horizon tragedy.

“WAVCIS is among the most sensitive ocean observing systems in the entire nation,” said Stone. “We measure a wide variety of physical parameters at the water surface, water column and on the sea bed. This information is extremely helpful in predicting or determining where the oil is – and where it’s going to go. Because our information is updated hourly and available to the public, our lab has played a primary role in providing facts about the situation surrounding the oil’s movement and location.”

Stone, whose experience with WAVCIS has spanned everything from natural to manmade disasters, knows that only time will tell the severity of the oil’s impact.

“This is a long term problem. It’s not simply going to go away. I was in Prince William Sound 10 years after the Exxon-Valdez event, and when I lifted up a rock, there was still residual oil beneath it,” he said. “Thus, the residence time of oil in the coastal environment can be substantial, although ecosystem conditions along the northern Gulf are very different and will likely recover quicker than in Alaska. We here at WAVCIS can at least track Gulf conditions to monitor the situation as closely as possible.”

For more information about WAVCIS, visit http://wavcis.csi.lsu.edu/.

Ashley Berthelot
LSU Media Relations
225-578-3870

Ashley Berthelot | EurekAlert!
Further information:
http://www.lsu.edu
http://wavcis.csi.lsu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>