Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low concentrations of oxygen and nutrients slowing biodegradation of Exxon Valdez oil

18.01.2010
The combination of low concentrations of oxygen and nutrients in the lower layers of the beaches of Alaska's Prince William Sound is slowing the aerobic biodegradation of oil remaining from the 1989 Exxon Valdez spill, according to researchers at Temple University.

Considered one of the worst environmental disasters in history, the Exxon Valdez spilled more than 11 million gallons of crude oil into Alaska's Prince William Sound, contaminating some 1,300 miles of shoreline, killing thousands of wildlife and severely impacting Alaska's fishing industry and economy.

In the first five years after the accident, the oil was disappearing at a rate of about 70 percent and calculations showed the oil would be gone within the next few years. However, about seven or eight years ago it was discovered that the oil had in fact slipped to a disappearance rate of around four percent a year and it is estimated that nearly 20,000 gallons of oil remains in the beaches.

The researchers, lead by Michel Boufadel, director of the Center for Natural Resources Development and Protection in Temple's College of Engineering, have been studying the cause of the remaining oil for the past three years.

Their study, "Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches," was posted Jan. 17 in advance of publication on Nature Geoscience's Web-site (http://www.nature.com/ngeo/index.html).

Boufadel said the beaches they studied consisted of two layers: an upper layer that is highly permeable and a lower layer that has very low permeability. He said that, on average, water moved through the upper layer up to 1,000-times faster than the lower layer, and while both layers are made up of essentially the same materials, the lower layer has become more compacted through the movement of the tides over time.

These conditions, said Boufadel, have created a sort of sheltering effect on the oil, which often lies just 1-4 inches below the interface of the two layers.

Boufadel said that oxygen and nutrients are needed for the survival of micro-organisms that eat the oil and aid in aerobic biodegradation of the oil. But without the proper concentrations of the nutrients and oxygen along with the slow movement of water, anaerobic biodegradation is probably occurring, which is usually very slow.

Boufadel, who is also chair of the Department of Civil and Environmental Engineering at Temple, said that an earlier study, published in 1994, had already established a low concentration of nutrients was affecting the remaining Exxon Valdez oil.

He said that because of Alaska's pristine environment, you would expect to find a low concentration of nutrients and this recent study confirmed the earlier findings. What Boufadel and his team found was, on average, that the nutrient concentration in the beaches was 10 times lower than what is required for optimal aerobic biodegradation of oil. They also found that the oxygen levels in the beaches are also insufficient to sustain aerobic biodegradation.

Using groundwater hydraulic studies, the researchers found that the net movement of water through the lower layer of beach was outwards, so it is preventing oxygen from diffusing through the upper layer to where the oil is located.

"You have a high amount of oxygen in the seawater, so you would like to think that the oxygen would diffuse in the beach and get down 2-4 inches into the lower layer and get to the oil," said Boufadel. "But the outward movement of the water in the lower level is blocking the oxygen from spreading down into that lower layer."

Boufadel and his team are now exploring ways to deliver the much needed oxygen and nutrients to the impacted areas in an effort to spur aerobic biodegradation of the remaining oil.

The study was funded by a grant from the Exxon Valdez oil Spill Trustee Council.

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>