Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of "lake lawnmowers" leads to algae blooms

29.09.2011
Unprecedented algae growth in some lakes could be linked to the decline of water calcium levels and the subsequent loss of an important algae-grazing organism that helps keep blooms at bay.

Daphnia—also known as water fleas—act like microscopic lawnmowers in lakes, feeding on algae and keeping it in check. However, without sufficient calcium, these water fleas cannot reproduce.

“When water calcium levels get low and Daphnia populations decrease in any lake, algal growth goes unchecked and blooms can occur,” says lead author and biology doctoral student Jennifer Korosi. “Losing an important grazer like these water fleas has a domino effect that leads to other water quality problems.”

Declining calcium concentrations in some lakes, which is linked to acid deposition and logging, has only recently been identified as a serious environmental problem in North America and Europe.

By studying microscopic fossils and other indicators preserved in a lake sediment core from Lake George (Nova Scotia), the Queen’s research team found that algal production remained relatively constant throughout the last century until around1990 when the levels tripled. The increase in algae directly coincided with the decrease of Daphnia in the lake.

“Algal blooms appear to be increasing in many lake regions,” says biology professor John Smol, Canada Research Chair in Environmental Change, and previous winner of the Natural Sciences and Engineering Research Council of Canada (NSERC) Herzberg Gold Medal as Canada’s top scientist. “Decreasing calcium levels appear to be one more factor that can exacerbate this problem. This is particularly worrisome given that many other stressors, such as climate warming and fertilizer runoff, are already contributing to the production of nuisance algal blooms. This is one more nail in the coffin.”

Other members of the research team include PhD candidate Joshua Thienpont and undergraduate student Samantha Burke. Funding for the research comes from NSERC.

These findings will be published in the next issue of the prestigious international journal Proceedings of the Royal Society B.

Christina Archibald | EurekAlert!
Further information:
http://www.queensu.ca/news/articles/loss-lake-lawnmowers-leads-algae-blooms
http://www.queensu.ca

Further reports about: Daphnia galeata NSERC algal bloom calcium level water fleas

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>