Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of predators affecting ecosystem health

10.04.2012
The study this story is based on is available online: http://hdl.handle.net/1957/28411
A survey on the loss in the Northern Hemisphere of large predators, particularly wolves, concludes that current populations of moose, deer, and other large herbivores far exceed their historic levels and are contributing to disrupted ecosystems.

The research, published today by scientists from Oregon State University, examined 42 studies done over the past 50 years.

It found that the loss of major predators in forest ecosystems has allowed game animal populations to greatly increase, crippling the growth of young trees and reducing biodiversity. This also contributes to deforestation and results in less carbon sequestration, a potential concern with climate change.

“These issues do not just affect the United States and a few national parks,” said William Ripple, an OSU professor of forestry and lead author of the study. “The data from Canada, Alaska, the Yukon, Northern Europe and Asia are all showing similar results. There’s consistent evidence that large predators help keep populations of large herbivores in check, with positive effects on ecosystem health.”

Densities of large mammalian herbivores were six times greater in areas without wolves, compared to those in which wolves were present, the researchers concluded. They also found that combinations of predators, such as wolves and bears, can create an important synergy for moderating the size of large herbivore populations.

“Wolves can provide food that bears scavenge, helping to maintain a healthy bear population,” said Robert Beschta, a professor emeritus at OSU and co-author of the study. “The bears then often prey on young moose, deer or elk – in Yellowstone more young elk calves are killed by bears than by wolves, coyotes and cougars combined.”

In Europe, the coexistence of wolves with lynx also resulted in lower deer densities than when wolves existed alone.

In recent years, OSU researchers have helped lead efforts to understand how major predators help to reduce herbivore population levels, improve ecosystem function and even change how herbivores behave when they feel threatened by predation – an important aspect they call the “ecology of fear.”

“In systems where large predators remain, they appear to have a major role in sustaining the diversity and productivity of native plant communities, thus maintaining healthy ecosystems,” said Beschta. “When the role of major predators is more fully appreciated, it may allow managers to reconsider some of their assumptions about the management of wildlife.”

In Idaho and Montana, hundreds of wolves are now being killed in an attempt to reduce ranching conflicts and increase game herd levels.

The new analysis makes clear that the potential beneficial ecosystem effects of large predators is far more pervasive, over much larger areas, than has often been appreciated.

It points out how large predators can help maintain native plant communities by keeping large herbivore densities in check, allow small trees to survive and grow, reduce stream bank erosion, and contribute to the health of forests, streams, fisheries and other wildlife.

It also concludes that human hunting, due to its limited duration and impact, is not effective in preventing hyper-abundant densities of large herbivores. This is partly “because hunting by humans is often not functionally equivalent to predation by large, wide-ranging carnivores such as wolves,” the researchers wrote in their report.

“More studies are necessary to understand how many wolves are needed in managed ecosystems,” Ripple said. “It is likely that wolves need to be maintained at sufficient densities before we see their resulting effects on ecosystems.”

The research was published online today in the European Journal of Wildlife Research, a professional journal.

“The preservation or recovery of large predators may represent an important conservation need for helping to maintain the resiliency of northern forest ecosystems,” the researchers concluded, “especially in the face of a rapidly changing climate.”

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

Bill Ripple | EurekAlert!
Further information:
http://www.oregonstate.edu
http://oregonstate.edu/ua/ncs/archives/2012/apr/loss-predators-northern-hemisphere-affecting-ecosystem-health

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>