Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of coastal seagrass habitat accelerating globally

01.07.2009
First comprehensive analysis shows 58 percent of seagrass meadows in decline

An international team of scientists warns that accelerating losses of seagrasses across the globe threaten the immediate health and long-term sustainability of coastal ecosystems.

The team has compiled and analyzed the first comprehensive global assessment of seagrass observations and found that 58 percent of world's seagrass meadows are currently declining.

The assessment, published in the Proceedings of the National Academy of Sciences, shows an acceleration of annual seagrass loss from less than 1 percent per year before 1940 to 7 percent per year since 1990. Based on more than 215 studies and 1,800 observations dating back to 1879, the assessment shows that seagrasses are disappearing at rates similar to coral reefs and tropical rainforests.

The team estimates that seagrasses have been disappearing at the rate of 110 square-kilometers (42.4 square-miles) per year since 1980 and cites two primary causes for the decline: direct impacts from coastal development and dredging activities, and indirect impacts of declining water quality.

"A recurring case of 'coastal syndrome' is causing the loss of seagrasses worldwide," said co-author Dr. William Dennison of the University of Maryland Center for Environmental Science. "The combination of growing urban centers, artificially hardened shorelines and declining natural resources has pushed coastal ecosystems out of balance. Globally, we lose a seagrass meadow the size of a soccer field every thirty minutes."

"While the loss of seagrasses in coastal ecosystems is daunting, the rate of this loss is even more so," said co-author Dr. Robert Orth of the Virginia Institute of Marine Science of the College of William and Mary. "With the loss of each meadow, we also lose the ecosystem services they provide to the fish and shellfish relying on these areas for nursery habitat. The consequences of continuing losses also extend far beyond the areas where seagrasses grow, as they export energy in the form of biomass and animals to other ecosystems including marshes and coral reefs."

"With 45 percent of the world's population living on the 5 percent of land adjacent to the coast, pressures on remaining coastal seagrass meadows are extremely intense," said co-author Dr. Tim Carruthers of the University of Maryland Center for Environmental Science. "As more and more people move to coastal areas, conditions only get tougher for seagrass meadows that remain."

Seagrasses profoundly influence the physical, chemical and biological environments of coastal waters. A unique group of submerged flowering plants, seagrasses provide critical habitat for aquatic life, alter water flow and can help mitigate the impact of nutrient and sediment pollution.

The article "Accelerating loss of seagrasses across the globe threatens coastal ecosystems," appears in the Proceedings of the National Academy of Sciences Early Edition on June 29. The article was authors by 14 scientists from the United States, Australia and Spain, including Drs. Michelle Waycott (lead author), Carlos Duarte, Tim Carruthers, Bob Orth, Bill Dennison, Suzanne Olyarnik, Ainsley Calladine, Jim Fourqurean, Ken Heck, Randall Hughes, Gary Kendrick, Jud Kenworthy, Fred Short, and Susan Williams.

The assessment was conducted as a part of the Global Seagrass Trajectories Working Group, supported by the National Center for Ecological Analysis and Synthesis (NCEAS) in Santa Barbara, California, through the National Science Foundation.

The University of Maryland Center for Environmental Science is the principal research institution for advanced environmental research and graduate studies within the University System of Maryland. UMCES researchers are helping improve our scientific understanding of Maryland, the region and the world through its three laboratories - Chesapeake Biological Laboratory in Solomons, Appalachian Laboratory in Frostburg, and Horn Point Laboratory in Cambridge - and the Maryland Sea Grant College.

Christopher Conner | EurekAlert!
Further information:
http://www.umces.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>