Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No Longer Pining for Organic Molecules to Make Particles in the Air

26.01.2011
New work will help researchers refine atmospheric weather, climate models

The fresh scent of pine has helped atmospheric scientists find missing sources of organic molecules in the air -- which, it could well turn out, aren't missing after all. In work appearing in this week's Proceedings of the National Academy of Sciences Early Edition Online, researchers examined what particles containing compounds such as those given off by pine trees look like and how quickly they evaporate. They found the particles evaporate more than 100 times slower than expected by current air-quality models.

"This work could resolve the discrepancy between field observations and models," said atmospheric chemist Alla Zelenyuk. "The results will affect how we represent organics in climate and air quality models, and could have profound implications for the science and policy governing control of submicron particulate matter levels in the atmosphere."

Zelenyuk and colleagues at the Department of Energy's Pacific Northwest National Laboratory were able to measure evaporation from atmospheric particles in a much more realistic manner than ever before. This allowed them to show that they are not liquids, as has been assumed for two decades, and to get an accurate read on how fast these particles evaporate. What researchers previously thought takes seconds actually takes days.

Airy Organics

Secondary organic aerosols are tiny bits of chemically modified organic compounds floating in the air. They absorb, scatter or reflect sunlight, and serve as cloud nuclei, making them an important component of the atmosphere.

For a couple of decades, researchers have interpreted laboratory and field measurements under the assumption that these particles are liquid droplets that evaporate fast, which is central to the way these particles are modeled. However, to this day researchers have failed to explain the high amounts observed in the real atmosphere. The never-ending search for extra sources of organics has been frustrating for scientists studying these aerosols.

To re-examine the assumption, researchers at PNNL used equipment that could study the particles under realistic conditions. Zelenyuk developed a sensitive and high-precision instrument called SPLAT II that can count, size and measure the evaporation characteristics of these particles at room temperature. Research and development for SPLAT II occurred partly in EMSL, DOE's Environmental Molecular Sciences Laboratory at PNNL.

SPLAT Surprises

First, the researchers created secondary organic aerosol particles in the lab by oxidizing alpha-pinene, the molecule that makes pine trees smell like pine. Oxidation is the same thing that happens to iron when it rusts, and happens a lot in the atmosphere when aerosols come into contact with gases such as ozone, which is a pollutant when it is low in the atmosphere.

For comparison, the researchers also made particles from other, well-understood organic molecules that are known to form solids or liquid droplets, such as one called DOP. Lastly, they allowed these other organic molecules and the pine-scented SOA particles to mingle to simulate what likely happens in the outdoors.

Monitoring the various particles with SPLAT II for up to 24 hours, the research team found that DOP particles behaved as expected. Organics evaporated from the particles quickly, and faster if the particle was smaller, which is how liquid particles evaporate.

But the pinene-based particles did not. About 50 percent of their volume evaporated away within the first 100 minutes. Then they clammed up, and only another 25 percent of their volume dissipated in the next 23 hours. In addition, this fast-slow evaporation occurred similarly whether the particle was big or small, indicating the particles were not behaving like a liquid.

This lack of evaporation could account for the inability of scientists to find other sources of atmospheric organics. "Our findings indicate that there may, in fact, be no missing SOA," said Zelenyuk.

Slowing Spectators

In the world, the SOAs from pinene co-exist with other organic molecules, and some of these slam onto the particle and coat it. Experiments with the co-mingled SOAs and organic compounds showed the researchers that coated particles evaporate even slower than single-source SOA.

Zelenyuk then tested how close to reality their lab-based SOAs were. Using air samples gathered in Sacramento, Calif., the team found the behavior of atmospheric SOAs (whether from trees and shrubs or pollution) paralleled that of the co-mingled pinene-derived SOAs in the lab and did not behave like liquids.

The results suggest that in the real atmosphere, SOA evaporation is so slow that scientists do not need to include the evaporation in certain models. The researchers hope that incorporating this information into atmospheric models will improve the understanding of aerosols' role in the climate.

More on http://www.emsl.pnl.gov/news/viewArticle.jsp?articleId=106">SPLAT II

More on the Sacramento CARES campaign

Reference: Timothy D. Vaden, Dan Imre, Josef Beránek, Manish Shrivastava, and Alla Zelenyuk, On the Evaporation Kinetics and Phase of Laboratory and Ambient Secondary Organic Aerosol, Proc Natl Acad Sci U S A, Early Edition online the week of January 24, DOI 10.1073/pnas.1013391108 (http://www.pnas.org/cgi/doi/10.1073/pnas.1013391108).

This work was supported by the U.S. Department of Energy Office of Science.

EMSL, the Environmental Molecular Sciences Laboratory located at Pacific Northwest National Laboratory, is a national scientific user facility sponsored by the Department of Energy's Office of Science. EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. EMSL’s technical experts and suite of custom and advanced instruments are unmatched. Its integrated computational and experimental capabilities enable researchers to realize fundamental scientific insights and create new technologies. EMSL's Facebook page.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,900 staff, has an annual budget of nearly $1.1 billion, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, LinkedIn and Twitter.

Mary Beckman | Newswise Science News
Further information:
http://www.pnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>