Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Long-term Study Shows Effect of Climate Change on Animal Diversity

Two species of giraffe, several rhinos and five elephant relatives, along with multitudes of rodents, bush pigs, horses, antelope and apes, once inhabited what is now northern Pakistan.

But when climate shifted dramatically there some 8 million years ago, precipitating a major change in vegetation, most species became locally extinct rather than adapting to the new ecosystem, according to an extensive, long-term study of mammal fossils spanning a 5-million-year period.

Results of the study, by University of Michigan paleoecologist Catherine Badgley and coworkers, are scheduled to be published online in the Proceedings of the National Academy of Sciences the week of Aug. 18.

The work has value not only in reconstructing Earth's past, but also for understanding what may lie ahead if current climate trends continue, Badgley said. "Climate is going to produce changes in ecological structure of all sorts of plants and animals around the world, now as in the past. The fossil record can help us understand how much---or how little---climate change is necessary to produce changes in ecosystems."

Badgley is part of an interdisciplinary team of geologists and paleontologists that has been studying the fossil-rich Siwalik sedimentary rocks in northern Pakistan for more than 30 years. The Siwalik Group of sediments contains one of the world's most complete and best-studied fossil records of mammals, chronicling in a two-mile-thick deposit of rock the mammals that roamed the area from 18 to 1 million years ago. About 8 million years ago, the local climate became drier, and the prevailing vegetation changed from tropical forests and woodland to a savannah similar to that found in parts of Africa today.

What happened next can be reconstructed from the chemistry and wear of the teeth of the plant-eating mammals, as well as the longevity of each species during the period when vegetation was changing. The teeth provide evidence of the animals' diets, revealing whether they switched to eating the newly abundant grasses when their favored fruits and broad-leafed plants were no longer available.

Mammals that relied on fruit and browse disappeared early in the transition from forest to savannah vegetation and were not replaced, while those that ate broad leaves and grasses either adapted and persisted by changing their diets to include more grass or disappeared and were replaced by immigrant species with similar diets. By the time that savannah was the dominant vegetation, most herbivorous mammals in the area subsisted mainly on grass. The overall effect was a significant decline in the diversity of mammals in the area.

"We see quite a different ecological profile of the kinds of mammals that coexisted after this climate change than before," said Badgley, who is an assistant professor of ecology and evolutionary biology, as well as a research scientist in the Department of Geological Sciences and the Museum of Paleontology. "It's clear that climate has had an impact on the ecological diversity of mammals in the area."

In addition to providing compelling evidence for the effects of climate change on ecological systems, the paper is a testament to the value of long-term research in a single field area, Badgley said. "This is the kind of study you can only do after you've been working in a place with a big team for 25 years or more, because you need all the other basic data to be thoroughly resolved before you can even start to address the kinds of questions in this work. We've been fortunate to have a team that found the various research topics so worthwhile and so interesting that they stuck with it for several decades, and we've also been fortunate to receive funding for field work for that long."

Badgley's co-authors on the PNAS paper are John Barry, Michèle Morgan and David Pilbeam of Harvard University; Sherry Nelson of the University of New Mexico; Kay Behrensmeyer of the National Museum of Natural History and Thure Cerling of the University of Utah. The research described in the paper was supported by a grant from the National Science Foundation.

Nancy Ross-Flanigan | Newswise Science News
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>