Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term Study Shows Effect of Climate Change on Animal Diversity

24.09.2008
Two species of giraffe, several rhinos and five elephant relatives, along with multitudes of rodents, bush pigs, horses, antelope and apes, once inhabited what is now northern Pakistan.

But when climate shifted dramatically there some 8 million years ago, precipitating a major change in vegetation, most species became locally extinct rather than adapting to the new ecosystem, according to an extensive, long-term study of mammal fossils spanning a 5-million-year period.

Results of the study, by University of Michigan paleoecologist Catherine Badgley and coworkers, are scheduled to be published online in the Proceedings of the National Academy of Sciences the week of Aug. 18.

The work has value not only in reconstructing Earth's past, but also for understanding what may lie ahead if current climate trends continue, Badgley said. "Climate is going to produce changes in ecological structure of all sorts of plants and animals around the world, now as in the past. The fossil record can help us understand how much---or how little---climate change is necessary to produce changes in ecosystems."

Badgley is part of an interdisciplinary team of geologists and paleontologists that has been studying the fossil-rich Siwalik sedimentary rocks in northern Pakistan for more than 30 years. The Siwalik Group of sediments contains one of the world's most complete and best-studied fossil records of mammals, chronicling in a two-mile-thick deposit of rock the mammals that roamed the area from 18 to 1 million years ago. About 8 million years ago, the local climate became drier, and the prevailing vegetation changed from tropical forests and woodland to a savannah similar to that found in parts of Africa today.

What happened next can be reconstructed from the chemistry and wear of the teeth of the plant-eating mammals, as well as the longevity of each species during the period when vegetation was changing. The teeth provide evidence of the animals' diets, revealing whether they switched to eating the newly abundant grasses when their favored fruits and broad-leafed plants were no longer available.

Mammals that relied on fruit and browse disappeared early in the transition from forest to savannah vegetation and were not replaced, while those that ate broad leaves and grasses either adapted and persisted by changing their diets to include more grass or disappeared and were replaced by immigrant species with similar diets. By the time that savannah was the dominant vegetation, most herbivorous mammals in the area subsisted mainly on grass. The overall effect was a significant decline in the diversity of mammals in the area.

"We see quite a different ecological profile of the kinds of mammals that coexisted after this climate change than before," said Badgley, who is an assistant professor of ecology and evolutionary biology, as well as a research scientist in the Department of Geological Sciences and the Museum of Paleontology. "It's clear that climate has had an impact on the ecological diversity of mammals in the area."

In addition to providing compelling evidence for the effects of climate change on ecological systems, the paper is a testament to the value of long-term research in a single field area, Badgley said. "This is the kind of study you can only do after you've been working in a place with a big team for 25 years or more, because you need all the other basic data to be thoroughly resolved before you can even start to address the kinds of questions in this work. We've been fortunate to have a team that found the various research topics so worthwhile and so interesting that they stuck with it for several decades, and we've also been fortunate to receive funding for field work for that long."

Badgley's co-authors on the PNAS paper are John Barry, Michèle Morgan and David Pilbeam of Harvard University; Sherry Nelson of the University of New Mexico; Kay Behrensmeyer of the National Museum of Natural History and Thure Cerling of the University of Utah. The research described in the paper was supported by a grant from the National Science Foundation.

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu
http://www.pnas.org/
http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=1337

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>