Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lobster Traps Going High Tech

10.03.2009
Lobstermen Collaborate with NOAA Lab and Marine Science Students

New England lobstermen have gone high tech by adding low-cost instruments to their lobster pots that record bottom temperature and provide data that could help improve ocean circulation models in the Gulf of Maine.

Environmental Monitors on Lobster Traps, or eMOLT, is a partnership involving NOAA, the Maine, Massachusetts, Downeast and Atlantic Offshore Lobstermen's Associations, the Gulf of Maine Lobster Foundation, and the Marine Science Department at Southern Maine Community College (SMCC) in Portland, Maine.

The data collected from temperature sensors on the lobster pots and from GPS surface drifters deployed as part of the eMOLT program help ocean circulation modelers better understand processes in the Gulf of Maine, such as how lobster larvae and other planktonic animals and plants, including those that cause harmful algal blooms, drift and settle. This information may also help determine how ocean currents disperse, condense and transport pollutants, invasive species, and food for whales in portions of the Gulf of Maine.

“Local fishermen already spend their days at sea, have the biggest stake in preserving our coastal marine resources, and are the most knowledgeable of the local waters,” said Jim Manning, an oceanographer at the Woods Hole Laboratory of the Northeast Fisheries Science Center (NEFSC), part of NOAA's Fisheries Service. “They are interested, curious and enthusiastic to learn more about lobster science and the environment. It seemed like a natural fit, a win-win situation.”

Manning got the idea for eMOLT while conducting research on Georges Bank in the 1990s and seeing many lobster boats in the area. In 1995, he deployed some large moorings to collect oceanographic data, but soon recognized that this was a very expensive effort in terms of time and money. He realized lobstermen had many moorings of their own in the area at fixed locations and depths which could provide needed time-series data at more sites and at far less cost.

With the help of NEFSC port agent John Mahoney, Manning approached some local lobstermen in Sandwich and Hyannis, Mass. to see if they were interested in helping collect bottom environmental data, whenever their lobster pots were out. They agreed. The pilot project started with three lobstermen who each took the temperature-measuring devices and attached them via a plastic tie-wrap to one or two of their pots.

The devices, which cost about $150 each, internally record temperature every hour around the clock while the pots are in the water. At the end of the season when the pots are hauled out, the instruments are removed and shipped back to Manning in an envelope he provides. He downloads and processes the data and then puts the temperature information on the eMOLT web site. Each lobsterman has his/her own personal web page to see the data from their own pots, while everyone including the general public can see the overall data collected each year.

By 2000, results from the pilot study were encouraging enough for Manning to apply for funding from the Northeast Consortium to formally establish eMOLT. The Consortium has funded the project since. Each year, more lobstermen participate in the program and new instruments are tried, some with success and others that need further development.

One of the program’s successes has been low-cost surface drifters equipped with Global Positioning System (GPS) chips, developed by Manning and since 2004 built by students in the marine science program at Southern Maine Community College (SMCC). The students build about 50 drifters a year, each costing about one third that of commercially-made instruments.

“About half of the cost goes to pay the students to build the drifters, so it gives them practical working experience plus the knowledge they are participating in marine research, and the other half is used for parts and other related expenses,” Manning said. The drifters have been deployed by students and researchers in studies by a number of colleges and universities, including Bowdoin College, the University of Southern Maine, University of New Hampshire, University of New England, Endicott College, and the University of Massachusetts Dartmouth.

The Woods Hole Oceanographic Institution has deployed some of the drifters for NOAA-funded studies on harmful algal blooms, commonly called red tides, in the Gulf of Maine. Other researchers have used the drifters for oceanographic studies ranging from where coastal currents in the Gulf of Maine could spread pollutants and invasive species to the distribution of plankton and zooplankton that serve as a major food for whales and other marine life.

Manning and colleagues published drifter observations in the journal Continental Shelf Research in January 2009. The temperature observations will be published in the March 2009 issue of the Journal of Operational Oceanography.

Close to 100 lobstermen have provided sensor data since the program started, and about 60 lobstermen have been long-term active participants. Manning says he is a bit surprised but very pleased so many lobstermen are interested in the project. The eMOLT partners have contributed to a database with more than three million hourly temperature records, 80,000 salinity records, and 260,000 satellite drifter fixes (locations).

Lobsterman Jason Day of Vinalhaven, Maine heard about eMOLT from his father, Walter Day, also a lobsterman and program participant. A year-round lobsterman, Jason Day puts his traps in the water in late April or early May and hauls them out in December. He became involved with eMOLT three years ago and has one trap equipped with a temperature sensor in shallow water near Vinalhaven.

“I’m interested in what is happening on the bottom, and eMOLT helps me keep up,” Day said. “The program covers a large area and provides a lot of data at a reasonable cost.” Day says he looks at the program’s web site, and although the data has been pretty much what he expected, he occasionally sees a change that he can relate to his catch.

What’s next? Manning says the partners are working on a real-time bottom temperature sensor attached to the traps that would wirelessly transmit data via satellite once the trap is hauled on deck. They are also working on a combined tilt meter-bottom current meter with digital compass to measure both bottom currents and the angle at which the trap rests on the seafloor. The information collected should provide insight in whether bottom currents affect how lobsters move, and whether currents influence lobsters to enter a trap. In the near future, Manning would like to add sensors to measure oxygen, nutrients, and pH to determine ocean acidification levels in the region.

“There used to be a debate on the docks about whether it was cold or warm on the bottom,” Manning said of the lobstermen, whom he meets regularly at their annual meetings and who send in updates. “Now there is no debate. The lobstermen see the data for themselves over time, and can take note of trends or changes that might affect their catches. It is a baseline that helps both lobster science and the scientists and ocean circulation modelers in the Gulf of Maine who, in partnership with the eMOLT lobstermen, constitute part of our nation’s integrated ocean observing systems.”

Shelley Dawicki | EurekAlert!
Further information:
http://www.noaa.gov
http://www.nefsc.noaa.gov/press_release/2009/SciSpot/SS0902/index.html

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>