Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using live fish, new tool a sentinel for environmental contamination

18.08.2008
Researchers have harnessed the sensitivity of days-old fish embryos to create a tool capable of detecting a range of harmful chemicals.

By measuring rates of oxygen use in developing fish, which are sensitive to contaminants and stressful conditions, the technology could reveal the presence of minute levels of toxic substances before they cause more obvious and substantial harm.

It could be used as an early warning system against environmental contamination or even biological weapons, said Purdue University researcher Marshall Porterfield, an associate professor of agricultural and biological engineering.

Respiration, the process wherein animals and other organisms burn oxygen to produce energy, is often the first of a fish's bodily functions affected by contaminants. The technology uses fiber optics to quickly monitor this activity and produce results within minutes, Porterfield said.

"Say you are exposed to the common cold virus," he said. "Before symptoms develop and you become aware of the bug's presence, it has already begun to attack your cells. Similarly, fish and other organisms are affected by contaminants before behavioral changes appear. Our technology detects heretofore undetectable changes to act as an early warning system."

In a study published online last week in the journal Environmental Science and Technology, the system detected the presence of several common pollutants such as the widely-used herbicide atrazine – even at levels near or below those that the U.S. Environmental Protection Agency deems acceptable for drinking water.

"This means the technology could not only help monitor environmental quality but may be used to enforce important water quality standards," said Marisol Sepulveda, lead author and assistant professor of forestry and natural resources at Purdue.

Testing also registered noticeable changes in the respiratory activity of fish embryos when the heavy metal cadmium was present at levels 60 times lower than the EPA limit, she said.

Throughout the study, contaminants did not destroy the eggs of laboratory-raised fathead minnows, a commonly studied fish species. This further demonstrates the tool's ability to discern subtle changes before they become fatal, Sepulveda said.

In the laboratory, researchers first manually positioned a tiny optical electrode, or optrode just outside individual embryos of two-day-old fathead minnows. At 1.5 millimeters in diameter, they were slightly smaller than the head of a pin, said primary author and Purdue doctoral student Brian Sanchez.

A fluorescent substance coated the electrode tip, its optical properties varying predictably with oxygen concentration. This allowed researchers to take quick measurements at locations only micrometers apart, moving the electrode via a computer-driven motor, Sanchez said. These readings then allowed researchers to calculate respiration rates within the eggs, he said.

Using a self-referencing technique Porterfield developed over the last decade, he and the team measured each egg with and without contaminants present. This allowed each embryo to serve as its own control, he said, providing more reliable results.

Porterfield said the technology could be used on other organisms. Study co-author and Purdue researcher Hugo Ochoa-Acuña has begun adjusting it to work with a type of crustacean.

A prototype could be ready to test in the field in four years if improvements continue, said Porterfield, a corresponding author. The technology currently tests immobilized eggs in a laboratory setting but there are plans to make the tool more versatile.

Porterfield also said he thinks the technology could have diverse uses. He imagines it could be conjugated with tumor cells to screen potential cancer drugs or help find new therapeutic targets.

During the study the technology detected four of five common pollutants tested, all known to act upon organisms in different ways: atrazine, cadmium, pentachlorophenol – an antifungal – and cyanide. It didn't register low levels of the insecticide malathion, possibly because fathead minnow embryos require more time to elapse for effects to become evident, Sanchez said.

Toxins can slow respiration by directly impeding it or they may stress the organism and cause it to burn more oxygen to provide energy for fighting the stressor, he said.

The most widely-used analogous technology monitors gill movements and other activities of bluegill fish with electrodes secured to the fish's bodies, Sepulveda said. The Purdue system could be advantageous as it records respiration in a sensitive life-stage and the optical equipment doesn't consume oxygen or require the same degree of calibration, Porterfield said.

The study, funded by Purdue's Center for the Environment and the U.S. Department of Education, was different from Sanchez's other research, which is primarily focused upon finding genes and proteins to serve as biomarkers for contaminant exposure in fish.

"This study was all the more exciting to be a part of due to its potential applications in protecting human health," he said.

Writer: Douglas M. Main, (765) 496-2050, dmain@purdue.edu
Sources: Marshall Porterfield, (765) 494-1190, porterf@purdue.edu
Marisol Sepúlveda, (765) 496-3428, mssepulv@purdue.edu
Brian Sanchez, (765) 494-9591, bcsanche@purdue.edu

Douglas M. Main | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>