Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using live fish, new tool a sentinel for environmental contamination

18.08.2008
Researchers have harnessed the sensitivity of days-old fish embryos to create a tool capable of detecting a range of harmful chemicals.

By measuring rates of oxygen use in developing fish, which are sensitive to contaminants and stressful conditions, the technology could reveal the presence of minute levels of toxic substances before they cause more obvious and substantial harm.

It could be used as an early warning system against environmental contamination or even biological weapons, said Purdue University researcher Marshall Porterfield, an associate professor of agricultural and biological engineering.

Respiration, the process wherein animals and other organisms burn oxygen to produce energy, is often the first of a fish's bodily functions affected by contaminants. The technology uses fiber optics to quickly monitor this activity and produce results within minutes, Porterfield said.

"Say you are exposed to the common cold virus," he said. "Before symptoms develop and you become aware of the bug's presence, it has already begun to attack your cells. Similarly, fish and other organisms are affected by contaminants before behavioral changes appear. Our technology detects heretofore undetectable changes to act as an early warning system."

In a study published online last week in the journal Environmental Science and Technology, the system detected the presence of several common pollutants such as the widely-used herbicide atrazine – even at levels near or below those that the U.S. Environmental Protection Agency deems acceptable for drinking water.

"This means the technology could not only help monitor environmental quality but may be used to enforce important water quality standards," said Marisol Sepulveda, lead author and assistant professor of forestry and natural resources at Purdue.

Testing also registered noticeable changes in the respiratory activity of fish embryos when the heavy metal cadmium was present at levels 60 times lower than the EPA limit, she said.

Throughout the study, contaminants did not destroy the eggs of laboratory-raised fathead minnows, a commonly studied fish species. This further demonstrates the tool's ability to discern subtle changes before they become fatal, Sepulveda said.

In the laboratory, researchers first manually positioned a tiny optical electrode, or optrode just outside individual embryos of two-day-old fathead minnows. At 1.5 millimeters in diameter, they were slightly smaller than the head of a pin, said primary author and Purdue doctoral student Brian Sanchez.

A fluorescent substance coated the electrode tip, its optical properties varying predictably with oxygen concentration. This allowed researchers to take quick measurements at locations only micrometers apart, moving the electrode via a computer-driven motor, Sanchez said. These readings then allowed researchers to calculate respiration rates within the eggs, he said.

Using a self-referencing technique Porterfield developed over the last decade, he and the team measured each egg with and without contaminants present. This allowed each embryo to serve as its own control, he said, providing more reliable results.

Porterfield said the technology could be used on other organisms. Study co-author and Purdue researcher Hugo Ochoa-Acuña has begun adjusting it to work with a type of crustacean.

A prototype could be ready to test in the field in four years if improvements continue, said Porterfield, a corresponding author. The technology currently tests immobilized eggs in a laboratory setting but there are plans to make the tool more versatile.

Porterfield also said he thinks the technology could have diverse uses. He imagines it could be conjugated with tumor cells to screen potential cancer drugs or help find new therapeutic targets.

During the study the technology detected four of five common pollutants tested, all known to act upon organisms in different ways: atrazine, cadmium, pentachlorophenol – an antifungal – and cyanide. It didn't register low levels of the insecticide malathion, possibly because fathead minnow embryos require more time to elapse for effects to become evident, Sanchez said.

Toxins can slow respiration by directly impeding it or they may stress the organism and cause it to burn more oxygen to provide energy for fighting the stressor, he said.

The most widely-used analogous technology monitors gill movements and other activities of bluegill fish with electrodes secured to the fish's bodies, Sepulveda said. The Purdue system could be advantageous as it records respiration in a sensitive life-stage and the optical equipment doesn't consume oxygen or require the same degree of calibration, Porterfield said.

The study, funded by Purdue's Center for the Environment and the U.S. Department of Education, was different from Sanchez's other research, which is primarily focused upon finding genes and proteins to serve as biomarkers for contaminant exposure in fish.

"This study was all the more exciting to be a part of due to its potential applications in protecting human health," he said.

Writer: Douglas M. Main, (765) 496-2050, dmain@purdue.edu
Sources: Marshall Porterfield, (765) 494-1190, porterf@purdue.edu
Marisol Sepúlveda, (765) 496-3428, mssepulv@purdue.edu
Brian Sanchez, (765) 494-9591, bcsanche@purdue.edu

Douglas M. Main | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>