Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Litter Levels in the Depths of the Arctic are On the Rise

10.02.2017

Sea ice could be responsible for transporting plastic litter

The Arctic has a serious litter problem: in just ten years, the concentration of marine litter at a deep-sea station in the Arctic Ocean has risen 20-fold. This was recently reported in a study by researchers at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI).


Plastic litter that has become tangled in a sponge (Cladorhiza cf. gelida) and subsequently covered with anemones (Amphianthus sp.).

Photo: AWI / Bergmann / OFOS

Plastic bags, glass shards and fishing nets: despite its location, far from any urban areas, the amount of litter in the depths of the Arctic Ocean continues to rise, posing a serious threat to its fragile ecosystem. Since 2002, AWI researchers have been documenting the amount of litter at two stations of the AWI’s “Hausgarten”, a deep-sea observatory network, which comprises 21 stations in the Fram Strait, between Greenland and Svalbard.

The results of the long-term study have now been published in the scientific journal Deep-Sea Research I. “Our time series confirms that litter levels in the Arctic deep sea have risen rapidly in the past few years,” says first author and AWI biologist Mine Tekman.

The scientists involved in the study observed the ocean floor at a depth of 2,500 metres using the OFOS (Ocean Floor Observation System), a towed camera system. Since the start of their measurements, they have spotted 89 pieces of litter in a total of 7,058 photographs. To enable comparison with other studies, the researchers have extrapolated the litter density to a larger area.

The result: an average of 3,485 pieces of litter per square kilometre in the monitoring period (2002 to 2014). Further, there has been a clearly recognizable increase in the past few years: when the team calculated a contamination level of 4,959 pieces of litter per square kilometre for 2011 in an earlier study, they hoped it was a statistical outlier. But the levels have continued to rise since, reaching a new peak of 6,333 pieces of litter per square kilometre in 2014.

The situation is particularly dramatic at the network’s northern station, called N3. “Here the amount of litter rose more than 20-fold between 2004 and 2014,” says Tekman. If we consider the findings for the northern research area in the marginal ice zone, the data for 2004 indicated 346 pieces of litter per square kilometre. Ten years later, the number had risen to 8,082. The level of contamination is similar to one of the highest litter densities ever reported from the deep seafloor, in Cap de Creus Canyon off the eastern coast of the Iberian Peninsula.

Among the litter they photographed, the researchers observed plastic and glass most frequently. As a rule, glass does not drift; it sinks straight down to the ocean floor. This indicates local sources and concurs with increasing ship traffic in the region due to the receding ice. Still, it is extremely difficult to draw any firm conclusions on the origin of the plastic litter, since it often covers a considerable distance before reaching the seafloor. In most cases, the scientists can’t determine the origin on the basis of photographs alone.

While it is clear that the Gulf Stream transports plastic litter into the Arctic with the Atlantic water masses, the authors also have a new theory as to why litter is accumulating in the Fram Strait: their results indicate a positive relationship between litter density and the summertime expansion of sea ice. “If we’re right, sea ice could entrain floating litter during ice formation. During warmer periods, the ice breaks up and is transported to the south into the Fram Strait with the Transpolar Drift, releasing entrained litter into the survey area when it melts,” says deep-sea biologist Dr Melanie Bergmann, a co-author of the study. “To date we’ve assumed just the opposite, since we viewed the ice as a barrier to litter contamination.”

The researchers are still faced with the puzzle of when and how plastic litter changes on its way to the deep sea. Over time they have observed more and more small bits of plastic, which are likely the result of larger pieces of litter fragmenting and could point to an increasing level of microplastic. This is surprising, since in the deep sea there is no UV light to break down the plastic, and the low temperatures are not conducive to disintegration. In the summer of 2016 the team rediscovered a piece of plastic, which they had first seen two years earlier. Bergmann: “Running into this same piece of plastic twice with hardly any changes to it is a vivid reminder that the depths of the Arctic are at risk of becoming a depot for plastic litter. The well-hidden accumulation of litter on the deep ocean floor could also explain why we still don’t know where 99% of the marine plastic litter ends up.”

More information on the AWI Hausgarten and the OFOS camera system:

The Hausgarten is the AWI’s deep-sea observatory in the Fram Strait, and currently consists of 21 stations at depths ranging from 250 to 5,500 metres. Samples have been collected at these stations every summer since 1999. Further, the year-round operation of moorings and free-falling lander systems, which serve as observation platforms on the seafloor, makes it possible to record seasonal changes. With the help of an ROV (Remotely Operated Vehicle), samples are collected at regular intervals, automatic recording instruments are positioned and maintained, and in-situ experiments are conducted. The Hausgarten represents one of the key regions in the European Network of Excellence ESONET (European Seas Observatory Network) and is part of Germany’s Long Term Ecological Research network (LTER-D).

During Polarstern expeditions to the Hausgarten, deep-sea researchers at the Alfred Wegener Institute regularly employ the remotely controlled towed camera system OFOS (Ocean Floor Observation System). At four Hausgarten stations its cameras are suspended roughly 1.5 metres above the seafloor at a depth of 2,500 metres, where they take a photograph every 30 seconds. These photographs enable deep-sea biologists to document changes in the species diversity for larger forms of sea-life, for example in sea cucumbers, sea lilies, sponges, fish and shrimps.

Notes for Editors:

Original publication:

• Mine B. Tekman, Thomas Krumpen, Melanie Bergmann: Marine litter on deep Arctic seafloor continues to increase and spreads to the North at the HAUSGARTEN observatory. Februar 2017. DOI: 10.1016/j.dsr.2016.12.011; Link:
http://dx.doi.org/10.1016/j.dsr.2016.12.011

Please find printable images in the online version of this press release: http://www.awi.de/nc/en/about-us/service/press.html

Your scientific contact persons are:

Dr Melanie Bergmann
tel.: +49 (0)471 4831-1739
e-mail: melanie.bergmann@awi.de

Mine B. Tekman
tel.: +49 (0)471 4831-2130
e-mail: mine.banu.tekman@awi.de

Your contact person at the Dept. of Communications and Media Relations is:

Sebastian Grote
tel.: +49 (0)471 4831-2006
e-mail: sebastian.grote@awi.de

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>