Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lichens function as indicators of nitrogen pollution in forests

08.10.2008
Scientists have found lichens can give insight into nitrogen air pollution effects on Sierra Nevada and San Bernardino mountain ecosystems, and protecting them provides safeguards for less sensitive species.

Their findings are presented this month in the international journal Environmental Pollution and are significant because nitrogen from air pollution causes detrimental chemical and biological effects to terrestrial and aquatic ecosystems. Other harmful effects include elevated nitrate concentrations in streams and groundwater, and weakened California forests more susceptible to bark beetle infestations and fires.

The U.S. Forest Service funded the study, which included the agency's own researchers working with scientists at the University of Arizona and Spain's National Research Center for Energy, Environment and Technology.

According to the scientists, nitrogen pollution that has virtually eliminated lichen species in the Los Angeles Basin and San Bernardino Mountains is now exceeding critical loads over much of the Western Sierra Nevada as far north as Lake Tahoe. Other areas in corridors of polluted air such as the Central Valley are also exceeding nitrogen critical loads.

"Publicity surrounds the carbon cycle and its effects on the environment, but humans have altered the global nitrogen cycle to a greater degree," said Mark Fenn, a Forest Service plant pathologist and one of the study's authors. "There are now significant changes in lichen indicator groups because nitrogen critical loads are being exceeded over much of California."

Scientists involved in the research studied 24 mixed-conifer forest sites exposed to a wide range of atmospheric nitrogen deposition and monitored adverse changes in lichens, among the most sensitive biological indicators of nitrogen effects.

The result is a useful tool for determining critical loads and preventing broader impacts to forests. Protecting lichens also has inherent value because of their complex hydrological, nutrient cycling, wildlife forage and nesting material roles.

"Quantifying nitrogen critical loads helps land managers determine the point at which unacceptable impacts occur to sensitive ecosystems," Fenn said. "This helps bring air quality management that is more firmly rooted in ecosystem protection."

The United Nations' International Cooperative Program on Effects of Air Pollution on Natural Vegetation and Crops has led the largest effort to quantify nitrogen critical loads. Similar coordinated efforts do not exist in the United States. But, U.S. research in critical loads is increasing.

Roland Giller | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>