Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lichens function as indicators of nitrogen pollution in forests

08.10.2008
Scientists have found lichens can give insight into nitrogen air pollution effects on Sierra Nevada and San Bernardino mountain ecosystems, and protecting them provides safeguards for less sensitive species.

Their findings are presented this month in the international journal Environmental Pollution and are significant because nitrogen from air pollution causes detrimental chemical and biological effects to terrestrial and aquatic ecosystems. Other harmful effects include elevated nitrate concentrations in streams and groundwater, and weakened California forests more susceptible to bark beetle infestations and fires.

The U.S. Forest Service funded the study, which included the agency's own researchers working with scientists at the University of Arizona and Spain's National Research Center for Energy, Environment and Technology.

According to the scientists, nitrogen pollution that has virtually eliminated lichen species in the Los Angeles Basin and San Bernardino Mountains is now exceeding critical loads over much of the Western Sierra Nevada as far north as Lake Tahoe. Other areas in corridors of polluted air such as the Central Valley are also exceeding nitrogen critical loads.

"Publicity surrounds the carbon cycle and its effects on the environment, but humans have altered the global nitrogen cycle to a greater degree," said Mark Fenn, a Forest Service plant pathologist and one of the study's authors. "There are now significant changes in lichen indicator groups because nitrogen critical loads are being exceeded over much of California."

Scientists involved in the research studied 24 mixed-conifer forest sites exposed to a wide range of atmospheric nitrogen deposition and monitored adverse changes in lichens, among the most sensitive biological indicators of nitrogen effects.

The result is a useful tool for determining critical loads and preventing broader impacts to forests. Protecting lichens also has inherent value because of their complex hydrological, nutrient cycling, wildlife forage and nesting material roles.

"Quantifying nitrogen critical loads helps land managers determine the point at which unacceptable impacts occur to sensitive ecosystems," Fenn said. "This helps bring air quality management that is more firmly rooted in ecosystem protection."

The United Nations' International Cooperative Program on Effects of Air Pollution on Natural Vegetation and Crops has led the largest effort to quantify nitrogen critical loads. Similar coordinated efforts do not exist in the United States. But, U.S. research in critical loads is increasing.

Roland Giller | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>