Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser-guided sea monkeys show how zooplankton migrations may affect global ocean currents

30.09.2014

Experiments in California demonstrate that collective movements of small zooplankton between water depths create large-scale current patterns with circulation effects as large as wind or tides

Sea monkeys have captured the popular attention of both children and aquarium hobbyists because of their easily observable life cycle -- sold as dehydrated eggs, these tiny brine shrimp readily hatch, develop and mate given little more than a tank of salt water.


A time lapse of migrating sea monkeys (white) and particles suspended in the water (yellow) reveals large, swirling currents created by the swimming animals that mix the surrounding water.

Credit: M. Wilhelmus and J.O. Dabiri/Caltech

Physicists, though, are interested in a shorter-term pattern: Like other zooplankton, brine shrimp vertically migrate in large groups in response to changing light conditions, coming closer to the surface at night and retreating deeper during the day.

Two researchers at the California Institute of Technology have shown experimentally that this pattern creates water currents much larger than the sum of those created by individual organisms in the group. Their results, published in the journal Physics of Fluids, from AIP Publishing, suggest that the collective movement of small marine organisms could affect global ocean circulation patterns on a level comparable to the wind and the tides.

Because brine shrimp (Artemia salina) display phototaxis, a tendency to move towards a light source, researchers Monica Wilhelmus and John Dabiri used lasers to herd a swarm of the small crustaceans in a large water tank and induce a vertical migration pattern. A blue laser rising along the side of the tank caused the brine shrimp to move upwards; a green laser above the tank kept them centered. To visualize the resulting currents, they mixed microscopic silver-coated glass spheres into the water and captured their changing distribution throughout the migration with a high-speed camera.

Previous studies have examined the tiny disturbances created when single plankton move through the water. Taken individually, these currents are not strong enough to impact broad ocean flow patterns. However, when two or more organisms swim in close proximity to each other as they did in this experiment, the eddies that they create interact to create more powerful swirling fluid forces that could alter water circulation on a wider scale.

"This research suggests a remarkable and previously unobserved two-way coupling between the biology and the physics of the ocean: the organisms in the ocean appear to have the capacity to influence their environment by their collective swimming," said Dabiri.

Currents distribute salt, nutrients, and heat throughout the oceans and have been attributed to winds and tides, but these results suggest that living organisms could also play a role. The findings provide experimental support for a theoretical model proposed by Dabiri's group in a 2009 Nature paper, which analyzed the effect of jellyfish on ocean mixing and proposed that such a model could also apply to smaller organisms.

The researchers hope to replicate the experiment in a tank where water density increases with depth, more closely mimicking ocean conditions. "If similar phenomena occur in the real ocean, it will mean that the biomass in the ocean can redistribute heat, salinity and nutrients," said Dabiri.

Because small organisms make up the bulk of oceanic biomass, the researchers estimate that their movement patterns could contribute a trillion watts of power to the ocean -- on par with the wind and the tides. Inside a fish tank, brine shrimp make engaging pets; in their natural habitat, they might have a global environmental impact.

###

The article, "Observations of large-scale fluid transport by laser-guided plankton aggregations," is authored by Monica M. Wilhelmus and John O. Dabiri. It will be published in the journal Physics of Fluids on September 30, 2014 (DOI: 10.1063/1.4895655) After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/pof2/26/10/10.1063/1.4895655

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See: http://pof.aip.org

Jason Socrates Bardi | Eurek Alert!

Further reports about: biomass circulation conditions global ocean monkeys movement nutrients physics

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>