Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser-guided sea monkeys show how zooplankton migrations may affect global ocean currents


Experiments in California demonstrate that collective movements of small zooplankton between water depths create large-scale current patterns with circulation effects as large as wind or tides

Sea monkeys have captured the popular attention of both children and aquarium hobbyists because of their easily observable life cycle -- sold as dehydrated eggs, these tiny brine shrimp readily hatch, develop and mate given little more than a tank of salt water.

A time lapse of migrating sea monkeys (white) and particles suspended in the water (yellow) reveals large, swirling currents created by the swimming animals that mix the surrounding water.

Credit: M. Wilhelmus and J.O. Dabiri/Caltech

Physicists, though, are interested in a shorter-term pattern: Like other zooplankton, brine shrimp vertically migrate in large groups in response to changing light conditions, coming closer to the surface at night and retreating deeper during the day.

Two researchers at the California Institute of Technology have shown experimentally that this pattern creates water currents much larger than the sum of those created by individual organisms in the group. Their results, published in the journal Physics of Fluids, from AIP Publishing, suggest that the collective movement of small marine organisms could affect global ocean circulation patterns on a level comparable to the wind and the tides.

Because brine shrimp (Artemia salina) display phototaxis, a tendency to move towards a light source, researchers Monica Wilhelmus and John Dabiri used lasers to herd a swarm of the small crustaceans in a large water tank and induce a vertical migration pattern. A blue laser rising along the side of the tank caused the brine shrimp to move upwards; a green laser above the tank kept them centered. To visualize the resulting currents, they mixed microscopic silver-coated glass spheres into the water and captured their changing distribution throughout the migration with a high-speed camera.

Previous studies have examined the tiny disturbances created when single plankton move through the water. Taken individually, these currents are not strong enough to impact broad ocean flow patterns. However, when two or more organisms swim in close proximity to each other as they did in this experiment, the eddies that they create interact to create more powerful swirling fluid forces that could alter water circulation on a wider scale.

"This research suggests a remarkable and previously unobserved two-way coupling between the biology and the physics of the ocean: the organisms in the ocean appear to have the capacity to influence their environment by their collective swimming," said Dabiri.

Currents distribute salt, nutrients, and heat throughout the oceans and have been attributed to winds and tides, but these results suggest that living organisms could also play a role. The findings provide experimental support for a theoretical model proposed by Dabiri's group in a 2009 Nature paper, which analyzed the effect of jellyfish on ocean mixing and proposed that such a model could also apply to smaller organisms.

The researchers hope to replicate the experiment in a tank where water density increases with depth, more closely mimicking ocean conditions. "If similar phenomena occur in the real ocean, it will mean that the biomass in the ocean can redistribute heat, salinity and nutrients," said Dabiri.

Because small organisms make up the bulk of oceanic biomass, the researchers estimate that their movement patterns could contribute a trillion watts of power to the ocean -- on par with the wind and the tides. Inside a fish tank, brine shrimp make engaging pets; in their natural habitat, they might have a global environmental impact.


The article, "Observations of large-scale fluid transport by laser-guided plankton aggregations," is authored by Monica M. Wilhelmus and John O. Dabiri. It will be published in the journal Physics of Fluids on September 30, 2014 (DOI: 10.1063/1.4895655) After that date, it can be accessed at:


Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See:

Jason Socrates Bardi | Eurek Alert!

Further reports about: biomass circulation conditions global ocean monkeys movement nutrients physics

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The nanostructured cloak of invisibility

25.10.2016 | Life Sciences

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

More VideoLinks >>>