Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large Sponges May Be Reattached to Coral Reefs

29.04.2009
A new study appearing in Restoration Ecology describes a novel technique for reattaching large sponges that have been dislodged from coral reefs. The findings could be generally applied to the restoration of other large sponge species removed by human activities or storm events.

20 specimens of the Caribbean giant barrel sponge were removed and reattached at Conch Reef off of Key Largo, Florida in 2004 and 2005 at depths of 15m and 30m. The sponges were affixed to the reef using sponge holders consisting of polyvinyl chloride piping, which was anchored in a concrete block that was set on a plastic mesh base.

Though the test area endured four hurricanes during the study period, 62.5 percent of sponges survived at least 2.3-3 years and 90 percent of the sponges attached in deep water locations survived. The sponges reattached to the reef after being held stationary by sponge holders for as little as 6 months.

Large sponges may be damaged by a variety of natural events and human activities including severe storms, vessel groundings and the cutting movements of chain or rope moved along with debris by strong currents. After these events, detached large sponges are commonly found, still alive and intact, between reef spurs on sand or rubble where they slowly erode under the action of oscillating currents.

“The worldwide decline of coral reef ecosystems has prompted many local restoration efforts, which typically focus on reattachment of reef-building corals,” says Professor Joseph Pawlik of the University of North Carolina-Wilmington, co-author of the study. “Despite their dominance on coral reefs, large sponges are generally excluded from restoration efforts because of a lack of suitable methods for sponge reattachment.”

These sponges, which often exceed reef-building corals in abundance, can be more than 1m in diameter and may be hundreds or thousands of years old. The success of past attempts at reattaching sponges, which used cement or epoxy, has been limited because adhesives do not bind to sponge tissue. When damaged or dislodged, large sponges usually die because they are unable to reattach to the reef. The results of the study show that these sponges have the ability to reattach to the reef if they can be properly secured.

Sean Wagner | EurekAlert!
Further information:
http://www.blackwellpublishing.com

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>