Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Large Sponges May Be Reattached to Coral Reefs

A new study appearing in Restoration Ecology describes a novel technique for reattaching large sponges that have been dislodged from coral reefs. The findings could be generally applied to the restoration of other large sponge species removed by human activities or storm events.

20 specimens of the Caribbean giant barrel sponge were removed and reattached at Conch Reef off of Key Largo, Florida in 2004 and 2005 at depths of 15m and 30m. The sponges were affixed to the reef using sponge holders consisting of polyvinyl chloride piping, which was anchored in a concrete block that was set on a plastic mesh base.

Though the test area endured four hurricanes during the study period, 62.5 percent of sponges survived at least 2.3-3 years and 90 percent of the sponges attached in deep water locations survived. The sponges reattached to the reef after being held stationary by sponge holders for as little as 6 months.

Large sponges may be damaged by a variety of natural events and human activities including severe storms, vessel groundings and the cutting movements of chain or rope moved along with debris by strong currents. After these events, detached large sponges are commonly found, still alive and intact, between reef spurs on sand or rubble where they slowly erode under the action of oscillating currents.

“The worldwide decline of coral reef ecosystems has prompted many local restoration efforts, which typically focus on reattachment of reef-building corals,” says Professor Joseph Pawlik of the University of North Carolina-Wilmington, co-author of the study. “Despite their dominance on coral reefs, large sponges are generally excluded from restoration efforts because of a lack of suitable methods for sponge reattachment.”

These sponges, which often exceed reef-building corals in abundance, can be more than 1m in diameter and may be hundreds or thousands of years old. The success of past attempts at reattaching sponges, which used cement or epoxy, has been limited because adhesives do not bind to sponge tissue. When damaged or dislodged, large sponges usually die because they are unable to reattach to the reef. The results of the study show that these sponges have the ability to reattach to the reef if they can be properly secured.

Sean Wagner | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>