Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Large differences in the climate impact of biofuels

When biomass is combusted the carbon that once was bound in the growing tree is released into the atmosphere.

For this reason, bioenergy is often considered carbon dioxide neutral. Research at the University of Gothenburg, Sweden, however, shows that this is a simplification. The use of bioenergy may affect ecosystem carbon stocks, and it can take anything from 2 to 100 years for different biofuels to achieve carbon dioxide neutrality.

“Using a tree as biofuel creates a carbon dioxide debt that must be “paid back” before the fuel can be considered to be carbon dioxide neutral. Energy forest is fully neutralised after 3-5 years, while other trees grow so slowly that it can take up to 100 years before they achieve carbon dioxide neutrality” says Lars Zetterberg of the Department of Earth Sciences at the University of Gothenburg.

The use of bioenergy affects ecosystem carbon stocks over time in either a positive or negative way. Biofuels where the combustion related emissions are compensated rapidly have a lower climate impact than fuels for which it takes a long time for the emissions to be compensated. Despite this, the difference in climate impacts between slow and rapid biofuels is rarely highlighted in political contexts. Emissions from bioenergy are, for example, not included in countries’ commitments under the Kyoto Protocol.

In his PhD thesis, Lars Zetterberg analyses how different types of biofuels affects the ecosystem carbon stock over time, and the consequent climate impact. The results show that biofuels where the combustion related emissions are compensated rapidly have a lower climate impact than fuels for which it takes a long time for the emissions to be compensated. Results from this study can help decision makers to understand the climate impacts from different bioenergy types in order to prioritize between different bioenergy alternatives.

“The time perspective over which the analysis is done is crucial for the result. Over a 100 year perspective the use of stumps for energy has a significantly lower climate impact than coal, but over a 20 year time perspective, stumps have a higher climate impact than natural gas. Using logging residues in the form of branches and tops for energy reduces carbon dioxide emissions in both the short term and the long term.”

If environmental legislation, for instance the EU renewables directive, requires that climate benefits of biofuels are calculated over a 20 year period, biofuels that need longer time to reach carbon neutrality may be regarded as not renewable..

“If we want to do reduce global carbon emissions quickly, we should prioritize fuels that are beneficial on a short time scale, for instance 20 years In addition, over a longer time scale it will be beneficial to replace coal with stumps, even if we will not see a result until after 20 years.”

In the thesis, Lars Zetterberg also addresses how the EU Emissions Trading System should be designed in order to incentivize the use of carbon dioxide efficient fuels.

The thesis Instruments for Reaching Climate Objectives – Focusing on the Time Aspects of Bioenergy and Allocation Rules in the European Union’s Emissions Trading System was successfully defended at a disputation held in the Department of Earth Sciences at the University of Gothenburg.

For more information, please contact: Lars Zetterberg
Telephone: +46 8 5985 6357

Helena Aaberg | idw
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>