Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large differences in the climate impact of biofuels

16.11.2011
When biomass is combusted the carbon that once was bound in the growing tree is released into the atmosphere.

For this reason, bioenergy is often considered carbon dioxide neutral. Research at the University of Gothenburg, Sweden, however, shows that this is a simplification. The use of bioenergy may affect ecosystem carbon stocks, and it can take anything from 2 to 100 years for different biofuels to achieve carbon dioxide neutrality.

“Using a tree as biofuel creates a carbon dioxide debt that must be “paid back” before the fuel can be considered to be carbon dioxide neutral. Energy forest is fully neutralised after 3-5 years, while other trees grow so slowly that it can take up to 100 years before they achieve carbon dioxide neutrality” says Lars Zetterberg of the Department of Earth Sciences at the University of Gothenburg.

The use of bioenergy affects ecosystem carbon stocks over time in either a positive or negative way. Biofuels where the combustion related emissions are compensated rapidly have a lower climate impact than fuels for which it takes a long time for the emissions to be compensated. Despite this, the difference in climate impacts between slow and rapid biofuels is rarely highlighted in political contexts. Emissions from bioenergy are, for example, not included in countries’ commitments under the Kyoto Protocol.

In his PhD thesis, Lars Zetterberg analyses how different types of biofuels affects the ecosystem carbon stock over time, and the consequent climate impact. The results show that biofuels where the combustion related emissions are compensated rapidly have a lower climate impact than fuels for which it takes a long time for the emissions to be compensated. Results from this study can help decision makers to understand the climate impacts from different bioenergy types in order to prioritize between different bioenergy alternatives.

“The time perspective over which the analysis is done is crucial for the result. Over a 100 year perspective the use of stumps for energy has a significantly lower climate impact than coal, but over a 20 year time perspective, stumps have a higher climate impact than natural gas. Using logging residues in the form of branches and tops for energy reduces carbon dioxide emissions in both the short term and the long term.”

If environmental legislation, for instance the EU renewables directive, requires that climate benefits of biofuels are calculated over a 20 year period, biofuels that need longer time to reach carbon neutrality may be regarded as not renewable..

“If we want to do reduce global carbon emissions quickly, we should prioritize fuels that are beneficial on a short time scale, for instance 20 years In addition, over a longer time scale it will be beneficial to replace coal with stumps, even if we will not see a result until after 20 years.”

In the thesis, Lars Zetterberg also addresses how the EU Emissions Trading System should be designed in order to incentivize the use of carbon dioxide efficient fuels.

The thesis Instruments for Reaching Climate Objectives – Focusing on the Time Aspects of Bioenergy and Allocation Rules in the European Union’s Emissions Trading System was successfully defended at a disputation held in the Department of Earth Sciences at the University of Gothenburg.

For more information, please contact: Lars Zetterberg
Telephone: +46 8 5985 6357
E-mail: lars.zetterberg@ivl.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://gupea.ub.gu.se/handle/2077/26672

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>