Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large anthropogenic nutrient and pollutant loads to the sea from small unmonitored near-coastal catchment areas

20.10.2008
A new study(1) by Destouni and her research group at Stockholm University (SU) shows that the waterborne nutrient and pollutant loads from land to the sea may be larger from small near-coastal areas, which are left without systematic environmental monitoring of their coastal loads, than from the large, systematically monitored main rivers.

Taking Sweden and the whole Baltic Sea region as examples, the study shows also that the reported Swedish loads of nitrogen and phosphorous to the Baltic Sea are significantly smaller than expected from strong correlations between a country’s nutrient loads and its population, area and economic activity (GDP per capita) within the Baltic Sea drainage basin (BSDB), which are found for all other Baltic Sea countries. Erroneous calculation of the nutrient loads from the relatively large Swedish unmonitored near-coastal areas can explain this significant difference between the reported and the expected nutrient loads from Sweden to the Baltic Sea.

The near-coastal areas that are left without systematic environmental monitoring may be small, but they extend along most of the coastlines and often have a large population proportion. For the whole BSDB, for instance, these areas cover 13% of the total area and 24% of the total population of the BSDB, according to an earlier study(2) by the same research group. For Sweden, the corresponding fractions are even larger: 55% of the Swedish population in the 20% unmonitored near-coastal catchment area of Sweden(2). The new study(1) shows that, with such a large population proportion, the concentrations of, for instance, nitrogen, phosphorous and organic pollutants in the water flow that are generated within these small near-coastal catchment areas may be much larger that in the systematically monitored main rivers. The mass load to the sea from a catchment area is the product of the area’s water flow to the sea and the mass concentration in that water flow. The latter may be large in near-coastal catchment areas, both due to a large population and due to increasing seawater intrusion into the near-coastal groundwater, which changes chemical conditions and may re-mobilise pollutants that were previously adsorbed on the solid particles of the groundwater system.

The unmonitored near-coastal catchment areas are not just forgotten when, for instance, the Swedish nutrient loads to the Baltic Sea are estimated. The data gaps are bridged with the help of computer model calculations. However, because the model results cannot be checked against representative field data for the unmonitored areas, they may be significantly wrong. A series of earlier and parallel, detailed process studies from the SU research group have shown: 1) that near-coastal catchment areas have particularly complex water flow conditions, which are not only possibly, but even probably erroneously estimated where some necessary data is missing(3-4); and 2) that the subsurface water systems (soil, groundwater, sediments) of catchment areas contain large legacies and long-term memories of the cumulative anthropogenic inputs of nutrients and pollutants in the catchments over at least the last decades(5-7), which can now be continuously transported to the sea, without detection, along the long coastlines of unmonitored near-coastal catchment areas. The new study(1) synthesizes main implications of these earlier and parallel studies and suggests a concrete, improved methodology for interpreting available field data and estimating the mass loading to the sea from unmonitored near-coastal catchment areas.

Referenses
1. Destouni G., Hannerz F., Prieto C., Jarsjö J., Shibuo Y., Small unmonitored near-coastal catchment areas yielding large mass loading to the sea, Global Biogeochem. Cycles, 22, GB4003, doi:10.1029/2008GB003287, 2008.
2 Hannerz F. and Destouni G., Spatial characterization of the Baltic Sea drainage basin and its unmonitored catchments, Ambio, 35(5), 214-219, 2006.
3 Destouni G., Shibuo Y., Jarsjö J., Freshwater flows to the sea: Spatial variability, statistics and scale dependence along coastlines, Geophys. Res. Lett., 35, L18401, doi:10.1029/2008GL035064, 2008.
4 Jarsjö J., Shibuo Y., Destouni G., Spatial distribution of unmonitored inland water discharges to the sea, Journal of Hydrology, 348, 59– 72, doi:10.1016/j.jhydrol.2007.09.052, 2008.
5 Darracq A., Lindgren G., Destouni G., Long-term development of Phosphorus and Nitrogen loads through the subsurface and surface water systems of drainage basins, Global Biogeochemical Cycles, GB3022, doi:10.1029/2007GB003022, 2008.
6 Lindgren G.A., Destouni G., Darracq A., Inland subsurface water system role for coastal nitrogen load dynamics and abatement responses, Environ. Sci. Technol., 41(7), 2159-2164, 2007

7 Destouni G., The subsurface water system role for surface and coastal water pollution, Ecohydrology & Hydrobiology, 7(2), 157-164, 2007.

Maria Sandqvist | alfa
Further information:
http://www.su.se

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>