Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landscape coefficients prove useful for urban water conservation efforts

24.06.2011
New strategies provide important irrigation information, promote water savings

Although water consumption and conservation are widely recognized as significant environmental concerns in the United States, most Americans are still unaware of the major impact of landscape irrigation on their regional water supplies. One startling example: a 2004 study of homeowners in College Station, Texas, estimated that more than 24 to 34 million gallons of excess water were used annually for landscape irrigation alone.

According to the authors of a study published in HortScience, end-users lack understanding of best management practices for landscape water management, thus contributing to excess water use. To gain insight into innovative water-saving strategies, the researchers tested the use of landscape coefficients as a tool in irrigation decision-making and resulting water savings in urban landscapes.

"Significant water use savings may be achieved if landscape irrigation is based on reference evapotranspiration—the amount of water lost through evaporation from the soil and plant surface plus that lost through plant transpiration", explained the study's corresponding author Tim Pannkuk. The research team measured landscape crop coefficients (KL) for landscapes comprised of different vegetation types and irrigation water quality differences affecting KL. The KL values were determined for landscape vegetation sites in College Station and San Antonio, Texas.

"In our study, St. Augustinegrass KL increased seasonally in San Antonio. The untrimmed native grasses increased in height and girth from spring until the first frost in November, whereas the mowed St. Augustinegrass had a relatively constant plant height and density during this time period", said Pannkuk. "The data showed that the mean KL for native grass was not statistically different from the KL of St. Augustinegrass with or without a tree. This implies that a seasonal KL could be used in irrigation recommendations for amenity landscapes with mixed species". Pannkuk noted that "it appears that the native grasses are opportunistic plants in regard to water use."

Municipalities and water planning agencies rely on several proven methods to promote water conservation. The new research shows that the use of a landscape coefficient for irrigating mixed-species landscapes has potential to enhance regional planning and conservation efforts. The study concluded that seasonal landscape water demand could be closely predicted with a landscape coefficient, weather station data, and number of irrigated acres in the region.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/45/10/1529

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>