Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Land's greenness affects monsoon rains' strength

04.11.2008
In Asia, how green your garden grows may affect the strength of the summer monsoon, according to a new study.

Scientists investigating the East Asian Summer Monsoon have found that the abundance of vegetation during winter and spring months is an important indicator of how much summer precipitation will fall.

The East Asian Summer Monsoon influences the lives of a quarter of the world's people and is critical for the cultivation and production of rice, East Asia's staple food. Forecasts of monsoon intensity and duration largely affect yearly agricultural planning.

"By including the land cover in our monsoon forecast models, we were able to explain about 80 percent of the variation in monsoonal rainfall. That's a huge improvement in how well models successfully predict the strength of the monsoon several months out," says the study's lead author Eungul Lee.

Lee conducted the work as a Ph.D. student at the University of Colorado at Boulder's Cooperative Institute for Research in Environmental Sciences (CIRES). He's now at the University of Wisconsin-Madison.

Lee and his CIRES colleagues published their findings last week in Water Resources Research, a journal of the American Geophysical Union (AGU).

Earlier monsoon models, which base their predictions on ocean factors such as sea surface temperature, typically explain just 25 percent to 40 percent of variations in East Asian summer rainfall. Such low predictive skill makes it impossible to accurately forecast droughts or floods, says Lee.

The CIRES team doubled the predictive capability of these models by including both ocean factors and estimates of the greenness of the landscape. They find that land cover in certain regions of Asia correlates particularly well with the strength of the monsoon.

Specifically, Lee and his colleagues find that strong northern East Asian Summer Monsoons tend to follow verdant springs in southern Asia but are weaker when northern and central Asia are more green. Southern East Asian Summer Monsoons are strongest following springs with abundant vegetative growth in Mongolia and western Asia.

Vegetation may indicate high soil moisture, the researchers say.

"In northern Asia, high soil moisture is probably cooling the land as it evaporates, in the same way that sweating cools the body. This cooling decreases the temperature difference between the land and ocean, inhibiting the formation of a strong monsoon system," says study coauthor Thomas Chase.

In contrast, higher soil moisture in southern Asia, near the ocean, appears to provide an additional moisture source to fuel monsoonal rains.

Earlier this year, the researchers found similar links between land cover and the Indian Monsoon.

"Findings from both regions enhance our hopes of identifying land- atmosphere relationships that will allow us to better predict the North American Monsoon, which serves as an important source of moisture for the U.S. Southwest," says Balaji Rajagopalan, who participated in both studies.

Peter Weiss | AGU
Further information:
http://www.agu.org

Further reports about: Land's greenness Monsoon Summer Vegetation monsoon models monsoon rain soil moisture

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>