Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Land 'evapotranspiration' taking unexpected turn: huge parts of world are drying up

11.10.2010
The soils in large areas of the Southern Hemisphere, including major portions of Australia, Africa and South America, have been drying up in the past decade, a group of researchers conclude in the first major study to ever examine "evapotranspiration" on a global basis.

Most climate models have suggested that evapotranspiration, which is the movement of water from the land to the atmosphere, would increase with global warming. The new research, published online this week in the journal Nature, found that's exactly what was happening from 1982 to the late 1990s.

But in 1998, this significant increase in evapotranspiration – which had been seven millimeters per year – slowed dramatically or stopped. In large portions of the world, soils are now becoming drier than they used to be, releasing less water and offsetting some moisture increases elsewhere.

Due to the limited number of decades for which data are available, scientists say they can't be sure whether this is a natural variability or part of a longer-lasting global change. But one possibility is that on a global level, a limit to the acceleration of the hydrological cycle on land has already been reached.

If that's the case, the consequences could be serious.

They could include reduced terrestrial vegetation growth, less carbon absorption, a loss of the natural cooling mechanism provided by evapotranspiration, more heating of the land surface, more intense heat waves and a "feedback loop" that could intensify global warming.

"This is the first time we've ever been able to compile observations such as this for a global analysis," said Beverly Law, a professor of global change forest science at Oregon State University. Law is co-author of the study and science director of the AmeriFlux network of 100 research sites, which is one major part of the FLUXNET synthesis that incorporates data from around the world.

"We didn't expect to see this shift in evapotranspiration over such a large area of the Southern Hemisphere," Law said. "It is critical to continue such long-term observations, because until we monitor this for a longer period of time, we can't be sure why this is occurring."

Some of the areas with the most severe drying include southeast Africa, much of Australia, central India, large parts of South America, and some of Indonesia. Most of these regions are historically dry, but some are actually tropical rain forests.

The rather abrupt change from increased global evapotranspiration to a near halt in this process coincided with a major El Nino event in 1998, the researchers note in their report, but they are not suggesting that is a causative mechanism for a phenomenon that has been going on for more than a decade now.

Greater evapotranspiration was expected with global warming, because of increased evaporation of water from the ocean and more precipitation overall. And data indeed show that some areas are wetter than they used to be.

However, other huge areas are now drying out, the study showed. This could lead to increased drought stress on vegetation and less overall productivity, Law said, and as a result less carbon absorbed, less cooling through evapotranspiration, and more frequent or extreme heat waves.

Some of the sites used in this study are operated by Law's research group in the central Oregon Cascade Range in the Metolius River watershed, and they are consistent with some of these concerns. In the last decade there have been multiple years of drought, vegetative stress, and some significant forest fires in that area.

Evapotranspiration returns about 60 percent of annual precipitation back to the atmosphere, in the process using more than half of the solar energy absorbed by land surfaces. This is a key component of the global climate system, linking the cycling of water with energy and carbon cycles.

Longer term observations will be needed to determine if these changes are part of decadal-scale variability or a longer-term shift in global climate, the researchers said.

This study was authored by a large group of international scientists, including from OSU; lead author Martin Jung from the Max Planck Institute for Biogeochemistry in Germany; and researchers from the Institute for Atmospheric and Climate Science in Switzerland, Princeton University, the National Center for Atmospheric Research in Colorado, Harvard University, and other groups and agencies.

The regional networks, such as AmeriFlux, CarboEurope, and the FLUXNET synthesis effort, have been supported by numerous funding agencies around the world, including the Department of Energy, NASA, National Science Foundation, and National Oceanic and Atmospheric Administration in the United States.

Editor's Note: The study citation is: Jung, M., M. Reichstein, P. Ciais, S.I. Seneviratne, J. Sheffield, M.L. Goulden, G. Bonan, A. Cescatti, J. Chen, R. de Jeu, A.J. Dolman, W. Eugster, D. Gerten, D. Gianelle, N. Gobron, J. Heinke, J. Kimball, B.E. Law, L. Montagnani, Q. Mu, B. Mueller, K. Oleson, D. Papale, A.D. Richardson, O. Roupsard, S.W. Running, E. Tomelleri, N. Viovy, U. Weber, C. Williams, E. Wood, S. Zaehle, K. Zhang. 2010. A recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature xxxx: xxx-xxx. DOI 10.1038/nature09396.

Beverly Law | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>