Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lab-on-a-chip Technology: Microfluidics Aids Major Advance in Environmental Testing

06.08.2008
Microfluidics experts, Dolomite, in collaboration with the UK’s National Centre for Atmospheric Science have announced the development of a new generation of microfluidics-based environmental testing equipment for use in air quality monitoring.

Microfluidics is an exciting new field of science and engineering that enables very small-scale fluid control and analysis, allowing instrument manufacturers to develop smaller, more cost-effective and more powerful systems. With this lab-on-a-chip technology, entire complex chemical management and analysis systems can be created in a microfluidic chip and interfaced with, for example, electronics and optical detection systems.

Headed by Professor Alastair Lewis, the team from the National Centre for Atmospheric Science is undertaking initial studies to evaluate the feasibility of developing a portable microfluidics-based environmental testing module. Today’s air monitoring procedure usually requires the collection of air samples at remote locations, which then have to be returned to a laboratory for analysis using large and expensive gas chromatography instruments.

The procedure is slow and costly. Professor Lewis’s research is aimed at developing a small-scale portable analysis system that will enable air quality to be analyzed and recorded in-situ. Such a system would have a dramatic effect on the speed of response to adverse changes in air quality.

"This is a great application of our technology," said Gillian Davis Regional Manager at Dolomite. "This is what microfluidics does best. It enables smaller, yet more powerful systems to be developed. Systems that may have been laboratory-based, can become more portable or even hand held, and at the same time can have increased accuracy and repeatability."

For this project Dolomite had to create a microfluidic device with an amazing 7.5m of micro-channel running through a 10cm square piece of glass. This is one of the largest devices and longest channels so far developed by Dolomite (this technology tends to be based in a smaller format). The fabrication processes used to create such a microfluidic device have some similarity to those used in the electronics industry.

The channels through which the fluids flow and interact are etched into materials such as glass or polymers using similar photolithography processes, for example. The patterned layers are then very accurately aligned and fused together and drilled to provide microscopic ports through which the chemicals or gases can enter and leave the device.

"The real challenge with this project was the fusing of such large etched glass plates," said Gillian Davis. "Aligning the plates to ensure the etched microchannels were perfectly matched took a great deal of experience and put our capabilities to quite a test."

Louisa Watts | alfa
Further information:
http://www.nerc.ac.uk
http://www.ncas.ac.uk/communications/lab_on_a_chip_july08.html

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>