Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lab-on-a-chip detects trace levels of toxic vapors in homes near Utah Air Force Base

27.06.2012
A lab-on-a-chip technology that measures trace amounts of air contaminants in homes was successfully field-tested by researchers at the University of Michigan.
Even in the presence of 50 other indoor air contaminants, the U-M-built microsystem found levels of the targeted contaminant so low that it would be analogous to finding a particular silver dollar in a roll stretching from Detroit to Salt Lake City.

"This is the first (known) study of its kind," said Ted Zellers, professor in the U-M School of Public Health and the Department of Chemistry, and project director.

"Most lab-on-a-chip technologies are used for biomedical analysis of liquids," Zellers said. "Our technology is designed for monitoring contaminants in the air, and this groundbreaking study is the first to prove that it can work outside the laboratory in real-life applications."

The applications are potentially limitless because the device, called a microfabricated gas chromatograph, can be tailored to detect any contaminants, Zellers said. For instance, the team is adapting the same technology to detect certain industrial chemicals in the breath and saliva of exposed workers, biomarkers of cancer and other chronic disease, and markers of explosives for airport screening applications.

The Department of Defense contracted the U-M team to adapt and test two prototypes devices in homes near Utah's Hill Air Force Base to measure indoor concentrations of trichloroethylene, or TCE. TCE was used on military bases until the 1970s, and improper disposal caused TCE to become a pervasive groundwater contaminant that can seep into homes above plumes.

"The core microfabricated silicon chips, when stacked, are roughly the size of a wristwatch," Zellers said. They require less power and can be made smaller and less expensively than traditionally manufactured counterparts.

The microsystem was designed and built by faculty and students affiliated with the Center for Wireless Integrated MicroSensing and Systems in the College of Engineering.

Zellers said the group is currently negotiating with several companies interested in commercializing the technology.

A series of articles describing the results appeared this month in the journal Environmental Science & Technology. Co-authors include Sun Kyu Kim, Hungwei Chang, and Jonathan Bryant-Genevier, of U-M; David Burris of IST, Inc., and Kyle Gorder and Erik Dettenmeier of Hill Air Force Base.

Related Links:
For more on Zellers: http://www.sph.umich.edu/iscr/faculty/profile.cfm?uniqname=ezellers
For more on WIMS: http://wims2.org/


The University of Michigan School of Public Health has been promoting health and preventing disease since 1941, and is ranked among the top public health schools in the nation. Whether making new discoveries in the lab or researching and educating in the field, our faculty, students, and alumni are deployed around the globe to promote and protect our health.

Laura Bailey | EurekAlert!
Further information:
http://www.sph.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>