Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lab-on-a-chip detects trace levels of toxic vapors in homes near Utah Air Force Base

A lab-on-a-chip technology that measures trace amounts of air contaminants in homes was successfully field-tested by researchers at the University of Michigan.
Even in the presence of 50 other indoor air contaminants, the U-M-built microsystem found levels of the targeted contaminant so low that it would be analogous to finding a particular silver dollar in a roll stretching from Detroit to Salt Lake City.

"This is the first (known) study of its kind," said Ted Zellers, professor in the U-M School of Public Health and the Department of Chemistry, and project director.

"Most lab-on-a-chip technologies are used for biomedical analysis of liquids," Zellers said. "Our technology is designed for monitoring contaminants in the air, and this groundbreaking study is the first to prove that it can work outside the laboratory in real-life applications."

The applications are potentially limitless because the device, called a microfabricated gas chromatograph, can be tailored to detect any contaminants, Zellers said. For instance, the team is adapting the same technology to detect certain industrial chemicals in the breath and saliva of exposed workers, biomarkers of cancer and other chronic disease, and markers of explosives for airport screening applications.

The Department of Defense contracted the U-M team to adapt and test two prototypes devices in homes near Utah's Hill Air Force Base to measure indoor concentrations of trichloroethylene, or TCE. TCE was used on military bases until the 1970s, and improper disposal caused TCE to become a pervasive groundwater contaminant that can seep into homes above plumes.

"The core microfabricated silicon chips, when stacked, are roughly the size of a wristwatch," Zellers said. They require less power and can be made smaller and less expensively than traditionally manufactured counterparts.

The microsystem was designed and built by faculty and students affiliated with the Center for Wireless Integrated MicroSensing and Systems in the College of Engineering.

Zellers said the group is currently negotiating with several companies interested in commercializing the technology.

A series of articles describing the results appeared this month in the journal Environmental Science & Technology. Co-authors include Sun Kyu Kim, Hungwei Chang, and Jonathan Bryant-Genevier, of U-M; David Burris of IST, Inc., and Kyle Gorder and Erik Dettenmeier of Hill Air Force Base.

Related Links:
For more on Zellers:
For more on WIMS:

The University of Michigan School of Public Health has been promoting health and preventing disease since 1941, and is ranked among the top public health schools in the nation. Whether making new discoveries in the lab or researching and educating in the field, our faculty, students, and alumni are deployed around the globe to promote and protect our health.

Laura Bailey | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>