Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Khaya Senegelansis : a natural oil adsorbent for produced water treatment


Instead of being just landscaping waste, the dried leaves can help environmental agencies and oil and gas companies treat waste water from petroleum extraction

The extraction process of petroleum from the ocean floor contributes to the increase in liquid waste.

Produced water contributes to about 80% of liquid waste being generated. Produced water consists mainly of heavy metals, radionuclides, oil and grease, processed chemicals, numerous types of dissolved gases, salts, solids, microorganisms, and dissolved oxygen. Oil and grease content in produced water can be divided into two types, which are dissolved oil and dispersed oil. Dissolved oils consist of benzene, etylbenzene, and xylene which are the main organic compounds in produced water.

However, dispersed oils are small droplets of oil suspended in liquid and contain fewer suntans of hydrocarbons. Untreated produced water contains numerous substances such as dispersed and dissolved oil, heavy metals, and chemicals produced can cause harm to the environment.

Dispersed oil content in produced water may vary in different oil wells. Dispersed oil in water is classified as toxicants to human beings and marine life. The dispersed oil can cause physiological damage and cause cancer in living creatures.

Over the years, numerous technologies have been established to treat dispersed oil in produced water treatment. Current treatment that is being used is by using physical method and also chemical treatment that may have a negative effect on the ecosystem.

In this research, the use of dried Khaya Senegelansis leaves was established as a natural oil adsorbent capable of absorbing dispersed oil. Khaya Senegelansis dried leaves were chosen due to its abundant availability in Malaysia. These types of trees are planted to enhance the landscape with plants and are planted all over most major urban cities. These trees play a significant role in developing a greener environment in urban areas. However, the leaves shed by the trees may be considered as waste. The leaves can be utilised by the local authorities to turn the waste into a useful product.

In this study the collected dried Khaya Senegelansis leaves were washed, dried and grounded before being mixed with synthetic produced water for 24hr. The mixed solution was than stirred by using a magnetic stirrer.

The engine oil used to be mixed in the produced water solution was SAE40 Petromas Mach 5 Mineral Engine Oil with distilled water. The results from Partition Gravimetric Method shows that the dried Khaya Senegelansis leaves are good oil sorbents due to the ability to remove 73% of oil from the solution in ambient temperature.

Images obtained from the Scanning Electron Microscope (SEM), Gemini models also proved that patches of oil appeared on the surface of the leaves after 24 hours of contact time.

This is because Khaya Senegelansis rich in phytochemical constituent which is lipophilic in nature. The constituents include flavonoids, carbohydrates, glycosides, saponins, tannins and anthraquinones. Saponins and flavonoids are the main components that contribute to oil absorption due to their lipophilic properties. A series of experiments were conducted to gauge the effects of various temperatures and oil concentration to investigate it's capability in adsorbing more oil and grease especially in produced water treatment.

The results strongly indicated that Khaya Senegelansis dried a leaf which is a naturally occurring product can be used as an environment friendly oil adsorbent.

The findings also helps the local authorities to manage landscaping waste such as the dried leaves as well as to help the oil and gas companies to have more choices in treating Produced Water.

Faculty of Chemical Engineering
Universiti Teknologi MARA

Darmarajah Nadarajah | Research SEA News
Further information:

Further reports about: Engineering UiTM chemicals concentration droplets ecosystem flavonoids leaf leaves salts synthetic

More articles from Ecology, The Environment and Conservation:

nachricht NOAA declares third ever global coral bleaching event
08.10.2015 | NOAA Headquarters

nachricht Blacklists Protect the Rainforest
24.09.2015 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>