Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key species of algae shows effects of climate change over time

15.01.2014
Historical comparison of competition among algae in waters around the Pacific Northwest provides more evidence for increased ocean acidification

A study of marine life in the temperate coastal waters of the northeast Pacific Ocean shows a reversal of competitive dominance among species of algae, suggesting that increased ocean acidification caused by global climate change is altering biodiversity.

The study, published online January 15, 2014, in the journal Ecology Letters, examined competitive dynamics among crustose coralline algae, a group of species living in the waters around Tatoosh Island, Washington. These species of algae grow skeletons made of calcium carbonate, much like other shelled organisms such as mussels and oysters.

As the ocean absorbs more carbon dioxide from the atmosphere, the water becomes more acidic. Crustose coralline algae and shellfish have difficulty producing their skeletons and shells in such an environment, and can provide an early indicator of how increasing ocean acidification affects marine life.

"Coralline algae is one of the poster organisms for studying ocean acidification," said lead study author Sophie McCoy, a PhD candidate in the Department of Ecology and Evolution at the University of Chicago. "On one hand, they can grow faster because of increased carbon dioxide in the water, but on the other hand, ocean acidification makes it harder for them to deposit the skeleton. It's an important tradeoff."

Scientists have been studying Tatoosh Island, located off the northwestern tip of Washington state, for decades, compiling a rich historical record of ecological data. In this study, McCoy and Cathy Pfister, professor of ecology and evolution at the University of Chicago, repeated experiments conducted in the 1980s by University of Washington biologist Robert Paine. McCoy transplanted four species of crustose coralline algae to test sites to study how today's ocean has changed how they compete with each other.

In the previous experiments, one species, Pseudolithophyllum muricatum, was clearly dominant, "winning" almost 100 percent of the time over the other three species. In the current set of experiments, P. muricatum won less than 25 percent of the time, and no species proved dominant. McCoy called this new competitive environment "rock, paper, scissors dynamics," in which no species has a clear advantage.

McCoy said that in the past, P. muricatum owed its dominance to being able to grow a much thicker skeleton than other species. Historical data show that in the 1980s it grew twice as thick as its competitors, but now P. muricatum no longer enjoys that advantage. Measurements from another recent study by McCoy in the Journal of Phycology show that it now grows half as thick on average, or roughly equal to the other species.

This decrease in thickness and loss of competitive advantage is most likely due to lower pH levels recorded over the last 12 years in the waters around Tatoosh, a measure of ocean acidification.

"The total energy available to these organisms is the same, but now they have to use some of it dealing with this new stress," she said. "Some species are more affected than others. So the ones that need to make more calcium carbonate tissue, like P. muricatum, are under more stress than the ones that don't."

McCoy said it's crucial to continue studying the effects of ocean acidification in a natural context like Tatoosh Island instead of in the laboratory.

"This study shows different dynamics than what other people have found in lab studies," she said. "Field sites like Tatoosh are unique because we have a lot of historical ecological data going back decades. I think it's really important to use that in nature to understand what's going on."

The National Science Foundation, the Department of Defense, the Achievement Rewards for College Scientists Foundation, the Phycological Society of America, the Geological Society of America and the University of Chicago provided funding for this study.

About the University of Chicago Medicine

The University of Chicago Medicine and its Comer Children's Hospital rank among the best in the country, most notably for cancer treatment, according to U.S. News & World Report's survey of the nation's hospitals. The University of Chicago's Pritzker School of Medicine has been named one of the Top 10 medical schools in the nation, by U.S. News' "Best Graduate Schools" survey. University of Chicago physician-scientists performed the first organ transplant and the first bone marrow transplant in animal models, the first successful living-donor liver transplant, the first hormone therapy for cancer and the first successful application of cancer chemotherapy. Its researchers discovered REM sleep and were the first to describe several of the sleep stages. Twelve of the Nobel Prize winners have been affiliated with the University of Chicago Medicine.

Visit our research blog at sciencelife.uchospitals.edu and our newsroom at uchospitals.edu/news.

Twitter @UChicagoMed
Facebook.com/UChicagoMed

Matt Wood | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>